m (Scipediacontent moved page Draft Content 952227901 to Labra et al 2012a)
 
(5 intermediate revisions by the same user not shown)
Line 41: Line 41:
 
[10] C. Balci and N. Bilgin. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines. International Journal of Rock Mechanics and Mining Sciences, 44:468-476, 2007.
 
[10] C. Balci and N. Bilgin. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines. International Journal of Rock Mechanics and Mining Sciences, 44:468-476, 2007.
  
[11] M. Bargiel. Geometrical properties of simulated packings of spherocylinders. In Computational Science { ICCS 2008, volume 5102 of Lecture Notes in Computer Science, pages 126-135. Springer Berlin / Heidelberg, 2008.
+
[11] M. Bargiel. Geometrical properties of simulated packings of spherocylinders. In Computational Science - ICCS 2008, volume 5102 of Lecture Notes in Computer Science, pages 126-135. Springer Berlin / Heidelberg, 2008.
  
 
[12] K. Bathe and E. Wilson. Numerical Methods in Finite Element Analysis. Prentice Hall, 1976.
 
[12] K. Bathe and E. Wilson. Numerical Methods in Finite Element Analysis. Prentice Hall, 1976.
  
[13] R. Bathurst and L. Rothenburg. Micromechanical aspects of isotropic granular assemblies with linear contact interactions. Journal of Applied Mechanics, ASME, 55(1):17{23, 1988.
+
[13] R. Bathurst and L. Rothenburg. Micromechanical aspects of isotropic granular assemblies with linear contact interactions. Journal of Applied Mechanics, ASME, 55(1):17-23, 1988.
  
[14] T. Belytschko, P. Smolinski, and W. Liu. Stability of multi-time step partitioned integrators for the first order finite element systems. Comput. Meth. Appl. Mech. Eng., 49:281{297, 1985.
+
[14] T. Belytschko, P. Smolinski, and W. Liu. Stability of multi-time step partitioned integrators for the first order finite element systems. Comput. Meth. Appl. Mech. Eng., 49:281-297, 1985.
  
[15] D. Benson and J. Hallquist. A simple rigid body algorithm for structural dynamics programs. Int. J. Num. Meth. Eng., 12:723{749, 1986.
+
[15] D. Benson and J. Hallquist. A simple rigid body algorithm for structural dynamics programs. Int. J. Num. Meth. Eng., 12:723-749, 1986.
  
[16] H. Brandt. A study of the speed of sound in porous granular media. Journal of Applied Mechanics, ASME, 22:479{486, 1955.
+
[16] H. Brandt. A study of the speed of sound in porous granular media. Journal of Applied Mechanics, ASME, 22:479-486, 1955.
  
[17] B. Cambou. Micromechanical approach in granular materials. In Behaviour of Granular Materials, volume 385, pages 170{216. Springer Wien, 1998.
+
[17] B. Cambou. Micromechanical approach in granular materials. In Behaviour of Granular Materials, volume 385, pages 170-216. Springer Wien, 1998.
  
[18] B. Cambou, M. Chaze, and F. Dedecker. Change of scale in granular materials. Eur. J. Mech. A/Solids, 19:999{1014, 2000.
+
[18] B. Cambou, M. Chaze, and F. Dedecker. Change of scale in granular materials. Eur. J. Mech. A/Solids, 19:999-1014, 2000.
  
 
[19] J. M. Carbonell. Modeling of ground excavation with the particle finite element method. PhD thesis, Escola Técnica Superior d'Enginers de Camins Canals i Ports, Universitat Politécnica de Catalunya, 2009.
 
[19] J. M. Carbonell. Modeling of ground excavation with the particle finite element method. PhD thesis, Escola Técnica Superior d'Enginers de Camins Canals i Ports, Universitat Politécnica de Catalunya, 2009.
  
[20] M. Cervera and M. Chiumenti. Mesh objective tensile cracking via a local continuum damage model and crack tracking technique. Computer Methods in Applied Mechanics and Engineering, 196(1-3):304{320, 2006.
+
[20] M. Cervera and M. Chiumenti. Mesh objective tensile cracking via a local continuum damage model and crack tracking technique. Computer Methods in Applied Mechanics and Engineering, 196(1-3):304-320, 2006.
  
[21] M. Cervera, M. Chiumenti, Q. Valverde, and C. A. de Saracibar. Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Computer Methods in Applied Mechanics and Engineering, 192(49-50):5249{5263, 2003.
+
[21] M. Cervera, M. Chiumenti, Q. Valverde, and C. A. de Saracibar. Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Computer Methods in Applied Mechanics and Engineering, 192(49-50):5249-5263, 2003.
  
[22] M. Cervera, L. Pelá, R. Clemente, and P. Roca. A crack-tracking technique for localized damage in quasi-brittle materials. Engineering Fracture Mechanics, 77(13):2431{2450, 2010.
+
[22] M. Cervera, L. Pelá, R. Clemente, and P. Roca. A crack-tracking technique for localized damage in quasi-brittle materials. Engineering Fracture Mechanics, 77(13):2431-2450, 2010.
  
[23] C. Chang and A. Misra. Theoretical and experimental study of regular packing of granules. Journal of Engineering Mechanics, ASCE, 115(4):704{720, 1989.
+
[23] C. Chang and A. Misra. Theoretical and experimental study of regular packing of granules. Journal of Engineering Mechanics, ASCE, 115(4):704-720, 1989.
  
[24] C. Chang and A. Misra. Packing structure and mechanical properties of granulates. Journal of Engineering Mechanics, 116(5):1077{1093, 1990.
+
[24] C. Chang and A. Misra. Packing structure and mechanical properties of granulates. Journal of Engineering Mechanics, 116(5):1077-1093, 1990.
  
[25] C. Chang, Q. Shi, and C. Liao. Elastic constants for granular materials modeled as first-order strain-gradient continua. Int. J. Solids and Structures, 40:5565{5582, 2003.
+
[25] C. Chang, Q. Shi, and C. Liao. Elastic constants for granular materials modeled as first-order strain-gradient continua. Int. J. Solids and Structures, 40:5565-5582, 2003.
  
[26] C. S. Chang and J. Gao. Second-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Structures, 32(16):2279{2293, 1995.
+
[26] C. S. Chang and J. Gao. Second-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Structures, 32(16):2279-2293, 1995.
  
[27] M. Chiumenti, Q. Valverde, C. Agelet de Saracibar, and M. Cervera. A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput. Meth. Appl. Mech. Eng., 191:5253{5264, 2002.
+
[27] M. Chiumenti, Q. Valverde, C. Agelet de Saracibar, and M. Cervera. A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput. Meth. Appl. Mech. Eng., 191:5253-5264, 2002.
  
[28] M. Chiumenti, Q. Valverde, C. A. de Saracibar, and M. Cervera. A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. International Journal of Plasticity, 20(8{9):1487{1504, 2004.
+
[28] M. Chiumenti, Q. Valverde, C. A. de Saracibar, and M. Cervera. A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. International Journal of Plasticity, 20(8-9):1487-1504, 2004.
  
[29] J.-W. Cho, S. Jeon, S.-H. Yu, and S.-H. Chang. Optimum spacing of tbm disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology, 25(3):230{244, 2010.
+
[29] J.-W. Cho, S. Jeon, S.-H. Yu, and S.-H. Chang. Optimum spacing of tbm disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology, 25(3):230-244, 2010.
  
[30] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Meth. Appl. Mech. Eng., 190:1579{1599, 2000.
+
[30] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Meth. Appl. Mech. Eng., 190:1579-1599, 2000.
  
[31] R. Codina and J. Blasco. Stabilized finite element method for transient Navier-Stokes equations based on pressure gradient projection. Comput. Meth. Appl. Mech. Eng., 182:287{300, 2000.
+
[31] R. Codina and J. Blasco. Stabilized finite element method for transient Navier-Stokes equations based on pressure gradient projection. Comput. Meth. Appl. Mech. Eng., 182:287-300, 2000.
  
[32] L. Cui and C. O'Sullivan. Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granular Matter, 5:135{145, 2003.
+
[32] L. Cui and C. O'Sullivan. Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granular Matter, 5:135-145, 2003.
  
[33] P. Cundall and O. Strack. A discrete numerical method for granular assemblies. Geotechnique, 29:47{65, 1979.
+
[33] P. Cundall and O. Strack. A discrete numerical method for granular assemblies. Geotechnique, 29:47-65, 1979.
  
[34] P. A. Cundall. A computer model for simulating progressive, large-scale movements in blocky rock systems. In Symp. Int. Soc. Rock Mech., volume 2, pages 132{150, Nancy, 1971.
+
[34] P. A. Cundall. A computer model for simulating progressive, large-scale movements in blocky rock systems. In Symp. Int. Soc. Rock Mech., volume 2, pages 132-150, Nancy, 1971.
  
 
[35] P. A. Cundall. A computer model for rock-mass behaviour using interactive graphics for the input and output of geometrical data. Technical report, Report for the Missouri River Division, U.S. Army Corps of Engineers, University of Minnesota, 1974.
 
[35] P. A. Cundall. A computer model for rock-mass behaviour using interactive graphics for the input and output of geometrical data. Technical report, Report for the Missouri River Division, U.S. Army Corps of Engineers, University of Minnesota, 1974.
  
[36] P. A. Cundall and R. D. Hart. Numerical modeling of discontinua. Engineering Computations, 9:101{113, 1992.
+
[36] P. A. Cundall and R. D. Hart. Numerical modeling of discontinua. Engineering Computations, 9:101-113, 1992.
  
[37] P. G. de Gennes. Granular matter: A tentative view. Rev. Mod. Phys., 71(2):S374{S382, 1999.
+
[37] P. G. de Gennes. Granular matter: A tentative view. Rev. Mod. Phys., 71(2):S374-S382, 1999.
  
[38] H. Deresiewicz. Mechanics of granular matter. In Advances in Applied Mechanics, volume 5, pages 233{306. Elsevier, 1958.
+
[38] H. Deresiewicz. Mechanics of granular matter. In Advances in Applied Mechanics, volume 5, pages 233-306. Elsevier, 1958.
  
[39] P. Digby. The effective elastic moduli of porous granular rocks. Journal of Applied Mechanics, 48:803{808, 1981.
+
[39] P. Digby. The effective elastic moduli of porous granular rocks. Journal of Applied Mechanics, 48:803-808, 1981.
  
[40] F. Donzé, P. Mora, and S.-A. Magnier. Numerical simulation of faults and shear zones. Geophysical Journal International, 116:46{52, 1994.
+
[40] F. Donzé, P. Mora, and S.-A. Magnier. Numerical simulation of faults and shear zones. Geophysical Journal International, 116:46-52, 1994.
  
[41] O. Durán, N. Kruyt, and S. Luding. Analysis of three-dimensional micro-mechanical strain formulations for granular materials: Evaluation of accuracy. International Journal of Solids and Structures, 47(2):251{260, 2010.
+
[41] O. Durán, N. Kruyt, and S. Luding. Analysis of three-dimensional micro-mechanical strain formulations for granular materials: Evaluation of accuracy. International Journal of Solids and Structures, 47(2):251-260, 2010.
  
[42] R. N. Elias, M. A. Martins, and A. L. Coutinho. Simple finite element-based computation of distance functions in unstructured grids. International Journal for Numerical Methods in Engineering, 72(9):1095{1110, 2007.
+
[42] R. N. Elias, M. A. Martins, and A. L. Coutinho. Simple finite element-based computation of distance functions in unstructured grids. International Journal for Numerical Methods in Engineering, 72(9):1095-1110, 2007.
  
 
[43] EMI. Excavation Engineering and Earth Mechanics Institute. Colorado School of Mines. http://mining.mines.edu/emi.
 
[43] EMI. Excavation Engineering and Earth Mechanics Institute. Colorado School of Mines. http://mining.mines.edu/emi.
Line 109: Line 109:
 
[44] EN1926. Natural stone test methods - Determination of compressive strength. European committee for standarization. Brussels, 1999.
 
[44] EN1926. Natural stone test methods - Determination of compressive strength. European committee for standarization. Brussels, 1999.
  
[45] J. Evans. Random and cooperative sequential adsorption. Reviews of Modern Physics, 65(4):1281{1304, 1993.
+
[45] J. Evans. Random and cooperative sequential adsorption. Reviews of Modern Physics, 65(4):1281-1304, 1993.
  
[46] G. Exadaktylos, M. Stavropoulou, G. Xiroudakis, M. de Broissia, and H. Schwarz. A spatial estimation model for continuous rock mass characterization from the specific energy of a TBM. Rock Mechanics and Rock Engineering, 41:797{834, 2008.
+
[46] G. Exadaktylos, M. Stavropoulou, G. Xiroudakis, M. de Broissia, and H. Schwarz. A spatial estimation model for continuous rock mass characterization from the specific energy of a TBM. Rock Mechanics and Rock Engineering, 41:797-834, 2008.
  
[47] A. Fakhimi and T. Villegas. Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech. Rock Engng., 40(2):193{211, 2007.
+
[47] A. Fakhimi and T. Villegas. Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech. Rock Engng., 40(2):193-211, 2007.
  
[48] E. Farrokh, J. Rostami, and C. Laughton. Study of various models for estimation of penetration rate of hard rock TBMs. Tunnelling and Underground Space Technology, 30:110{123, 2012.
+
[48] E. Farrokh, J. Rostami, and C. Laughton. Study of various models for estimation of penetration rate of hard rock TBMs. Tunnelling and Underground Space Technology, 30:110-123, 2012.
  
[49] Y. T. Feng, K. Han, and D. R. J. Owen. Filling domains with disks: an advancing front approach. Int. J. Numer. Meth. Engng., 56:699{713, 2003.
+
[49] Y. T. Feng, K. Han, and D. R. J. Owen. Filling domains with disks: an advancing front approach. Int. J. Numer. Meth. Engng., 56:699-713, 2003.
  
 
[50] J.-A. Ferrez. Dynamic triangulations for efficient 3D simulation of granular
 
[50] J.-A. Ferrez. Dynamic triangulations for efficient 3D simulation of granular
 
materials. PhD thesis, École Polytechnique Fédérale De Lausanne, 2001.
 
materials. PhD thesis, École Polytechnique Fédérale De Lausanne, 2001.
  
[51] J.-A. Ferrez and T. Liebling. Robust 3D dynamic triangulations for collision detection in DEM simulations of granular materials. EPFL Supercomputing Review, 13:41{48, 2002.
+
[51] J.-A. Ferrez and T. Liebling. Robust 3D dynamic triangulations for collision detection in DEM simulations of granular materials. EPFL Supercomputing Review, 13:41-48, 2002.
  
[52] E. Forest and R. Ruth. Fourth-order symplectic integration. Physica D, 43:105{117, 1990.
+
[52] E. Forest and R. Ruth. Fourth-order symplectic integration. Physica D, 43:105-117, 1990.
  
[53] J. Gálvez, M. Elices, G. Guinea, and J. Planas. Mixed mode fracture of concrete under proportional and nonproportional loading. International Journal of Fracture, 94:267{284, 1998.
+
[53] J. Gálvez, M. Elices, G. Guinea, and J. Planas. Mixed mode fracture of concrete under proportional and nonproportional loading. International Journal of Fracture, 94:267-284, 1998.
  
[54] R. Gertsch, L. Gertsch, and J. Rostami. Disc cutting tests in Colorado Red Granite: Implications for TBM performance prediction. International Journal of Rock Mechanics and Mining Sciences, 44(2):238{246, 2007.
+
[54] R. Gertsch, L. Gertsch, and J. Rostami. Disc cutting tests in Colorado Red Granite: Implications for TBM performance prediction. International Journal of Rock Mechanics and Mining Sciences, 44(2):238-246, 2007.
  
[55] O. Haggstroon and R. Meester. Nearest neighbour and hard sphere models in continuum percolation. Random Structures and Algorithms, 9:295{315, 1996.
+
[55] O. Häggströon and R. Meester. Nearest neighbour and hard sphere models in continuum percolation. Random Structures and Algorithms, 9:295-315, 1996.
  
 
[56] J. Haile. Molecular dynamics simulation: Elementary methods. Wiley-Interscience, 1997.
 
[56] J. Haile. Molecular dynamics simulation: Elementary methods. Wiley-Interscience, 1997.
[57] K. Han, Y. Feng, and D. Owen. Sphere packing with a geometric based compression algorithm. Powder Technology, 155(1):33{41, 2005.
+
[57] K. Han, Y. Feng, and D. Owen. Sphere packing with a geometric based compression algorithm. Powder Technology, 155(1):33-41, 2005.
  
[58] S. Hentz, L. Daudeville, and F. V. Donzé. Identification and validation of a discrete element model for concrete. Journal of Engineering Mechanics, 130(6):709{719, 2004.
+
[58] S. Hentz, L. Daudeville, and F. V. Donzé. Identification and validation of a discrete element model for concrete. Journal of Engineering Mechanics, 130(6):709-719, 2004.
  
[59] S. Hentz, F. V. Donzé, and L. Daudeville. Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Computers and Structures, 82(29-30):2509{2524, 2004.
+
[59] S. Hentz, F. V. Donzé, and L. Daudeville. Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Computers and Structures, 82(29-30):2509-2524, 2004.
  
[60] H. Hertz. Uber die beruhrung fester elasticher korper (On the contact of elastic solids). Journal fur die reine und angewandte Mathematik, 92:156{171, 1882.
+
[60] H. Hertz. Über die berührung fester elasticher körper (On the contact of elastic solids). Journal für die reine und angewandte Mathematik, 92:156-171, 1882.
  
[61] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of Mechanics and Physics of Solids, 11:357{372, 1963.
+
[61] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of Mechanics and Physics of Solids, 11:357-372, 1963.
  
 
[62] H. Huang. Discrete element modeling of tool-rock interaction. PhD thesis, University of Minnesota, December 1999.
 
[62] H. Huang. Discrete element modeling of tool-rock interaction. PhD thesis, University of Minnesota, December 1999.
  
[63] H. Huang and E. Detournay. Intrinsic length scales in tool-rock interaction. International Journal of Geomechanics, 8(1):39{44, 2008.
+
[63] H. Huang and E. Detournay. Intrinsic length scales in tool-rock interaction. International Journal of Geomechanics, 8(1):39-44, 2008.
  
 
[64] Itasca. PDF2D 2.0 Particule  ow code in two dimensions. Minneapolis, MN, 1998.
 
[64] Itasca. PDF2D 2.0 Particule  ow code in two dimensions. Minneapolis, MN, 1998.
  
[65] S. Ji and H. H. Shen. Effect of contact force models on granular flow dynamics. J. Engrg. Mech., 132(11):1252{1259, 2006.
+
[65] S. Ji and H. H. Shen. Effect of contact force models on granular flow dynamics. J. Engrg. Mech., 132(11):1252-1259, 2006.
  
[66] H. Kruggel-Emden, M. Sturma, S. Wirtza, and V. Scherera. Selection of an appropriate time integration scheme for the discrete element method (DEM). Computers & Chemical Engineering, 32(10):2263{2279, 2008.
+
[66] H. Kruggel-Emden, M. Sturma, S. Wirtza, and V. Scherera. Selection of an appropriate time integration scheme for the discrete element method (DEM). Computers & Chemical Engineering, 32(10):2263-2279, 2008.
  
[67] N. Kruyt and L. Rothenburg. Statistics of the elastic behaviour of granular materials. Int. J. Solids and Structures, 38(28-29):4879{4899, 2001.
+
[67] N. Kruyt and L. Rothenburg. Statistics of the elastic behaviour of granular materials. Int. J. Solids and Structures, 38(28-29):4879-4899, 2001.
  
[68] N. P. Kruyt and L. Rothenburg. Micromechanical definition of the strain tensor for granular materials. Journal of Applied Mechanics, 118:706{711, 1996.
+
[68] N. P. Kruyt and L. Rothenburg. Micromechanical definition of the strain tensor for granular materials. Journal of Applied Mechanics, 118:706-711, 1996.
  
[69] N. P. Kruyt and L. Rothenburg. Micromechanical bounds for the effective elastic moduli of granular materials. International Journal of Solids and Structures, 39(2):311{324, 2002.
+
[69] N. P. Kruyt and L. Rothenburg. Micromechanical bounds for the effective elastic moduli of granular materials. International Journal of Solids and Structures, 39(2):311-324, 2002.
  
[70] M. R. Kuhn. Structured deformation in granular materials. Mechanics of Materials, 31:407{429, 1999.
+
[70] M. R. Kuhn. Structured deformation in granular materials. Mechanics of Materials, 31:407-429, 1999.
  
[71] C. Labra, J. Rojek, E. Oñate, and F. Koppl. Tunconstruct D2.1.3.3: Report of numerical modeling of disc cutter wear. Technical report, CIMNE, 2008.
+
[71] C. Labra, J. Rojek, E. Oñate, and F. Köppl. Tunconstruct D2.1.3.3: Report of numerical modeling of disc cutter wear. Technical report, CIMNE, 2008.
  
[72] C. Labra, J. Rojek, E. Oñate, and F. Zarate. Advances in discrete element modelling of underground excavations. Acta Geotechnica, 3(4):317{322, 2008.
+
[72] C. Labra, J. Rojek, E. Oñate, and F. Zarate. Advances in discrete element modelling of underground excavations. Acta Geotechnica, 3(4):317-322, 2008.
  
 
[73] H. Langhaar. Dimensional Analysis and Theory of Models. Wiley, 1951.
 
[73] H. Langhaar. Dimensional Analysis and Theory of Models. Wiley, 1951.
  
[74] K. Levenberg. A method for the solution of certain problems in least squares. Quart. Appl. Math., 2:164{168, 1944.
+
[74] K. Levenberg. A method for the solution of certain problems in least squares. Quart. Appl. Math., 2:164-168, 1944.
  
[75] C.-L. Liao, T.-P. Chang, and D.-H. Young. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal in Solids and Structures, 34(31-32):4087{4100, 1997.
+
[75] C.-L. Liao, T.-P. Chang, and D.-H. Young. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal in Solids and Structures, 34(31-32):4087-4100, 1997.
  
[76] X. Lin and T.-T. Ng. A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique, 47(2):319{329, 1997.
+
[76] X. Lin and T.-T. Ng. A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique, 47(2):319-329, 1997.
  
[77] R. Lohner and E. O~nate. A general advancing front technique for filling space with arbitrary objects. International Journal for Numerical Methods in Engineering, 61(12):1977{1991, 2004.
+
[77] R. Löhner and E. Oñate. A general advancing front technique for filling space with arbitrary objects. International Journal for Numerical Methods in Engineering, 61(12):1977-1991, 2004.
  
[78] B. Lubachevsky and F. Stillinger. Geometrik properties of random disk packings. J. Stat. Phys., 60:561{583, 1990.
+
[78] B. Lubachevsky and F. Stillinger. Geometrik properties of random disk packings. J. Stat. Phys., 60:561-583, 1990.
  
[79] S. Luding. Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41(21):5821{5836, 2004.
+
[79] S. Luding. Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41(21):5821-5836, 2004.
  
[80] D. Marquardt. An algorithm for least square estimation on nonlinear parameters. SIAM J. Appl. Math., 11:431{441, 1963.
+
[80] D. Marquardt. An algorithm for least square estimation on nonlinear parameters. SIAM J. Appl. Math., 11:431-441, 1963.
  
[81] R. D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique forces. J. Appl. Mech., 20:327{344, 1953.
+
[81] R. D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique forces. J. Appl. Mech., 20:327-344, 1953.
  
 
[82] B. Nilsen and L. Ozdemir. Hard rock tunnel boring prediction and field performance. In Rapid Excavation and Tunneling Conference RETC, 1993.
 
[82] B. Nilsen and L. Ozdemir. Hard rock tunnel boring prediction and field performance. In Rapid Excavation and Tunneling Conference RETC, 1993.
  
[83] I. Omelyan, I. Mryglod, and R. Folk. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Computer Physics Communications, 151:272{314, 2003.
+
[83] I. Omelyan, I. Mryglod, and R. Folk. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Computer Physics Communications, 151:272-314, 2003.
  
[84] E. O~nate and J. Rojek. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Computer Methods in Applied Mechanics and Engineering, 193(27-29):3087{3128, 2004.
+
[84] E. Oñate and J. Rojek. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Computer Methods in Applied Mechanics and Engineering, 193(27-29):3087-3128, 2004.
  
[85] E. O~nate, J. Rojek, R. Taylor, and O. Zienkiewicz. Finite calculus form for incompresible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Engng., 59:1473{1500, 2004.
+
[85] E. Oñate, J. Rojek, R. Taylor, and O. Zienkiewicz. Finite calculus form for incompresible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Engng., 59:1473-1500, 2004.
  
[86] C. O'Sullivan and J. D. Bray. Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Engineering Computations, 21(2/3/4):278{303, 2004.
+
[86] C. O'Sullivan and J. D. Bray. Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Engineering Computations, 21(2/3/4):278-303, 2004.
  
 
[87] L. Ozdemir. Development of theoretical equations for predicting tunnel borability. PhD thesis, Colorado School of Mines, Golden, Colorado, USA, 1977.
 
[87] L. Ozdemir. Development of theoretical equations for predicting tunnel borability. PhD thesis, Colorado School of Mines, Golden, Colorado, USA, 1977.
  
[88] D. Potyondy and P. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8):1329{1364, 2004. Rock Mechanics Results from the Underground Research Laboratory, Canada.
+
[88] D. Potyondy and P. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8):1329-1364, 2004. Rock Mechanics Results from the Underground Research Laboratory, Canada.
  
[89] D. Potyondy, P. Cundall, and C. Lee. Modelling rock using bonded assemblies of circular particles. In M. Aubertin, F. Hassani, and H. Mitri, editors, 2nd NARMS, Rock Mechanics Tools and Techniques, pages 1937{1944, Montreal, June 1996.
+
[89] D. Potyondy, P. Cundall, and C. Lee. Modelling rock using bonded assemblies of circular particles. In M. Aubertin, F. Hassani, and H. Mitri, editors, 2nd NARMS, Rock Mechanics Tools and Techniques, pages 1937-1944, Montreal, June 1996.
  
[90] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev., 136(2A):A405{A411, 1964.
+
[90] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev., 136(2A):A405-A411, 1964.
  
 
[91] A. Ramezanzadeh, J. Rostami, and R. Kastner. Performance prediction models for hard rock tunnel boring machines. In Proceedings of Sixth Iranian Tunneling Conference, Tehran, Iran, 2004.
 
[91] A. Ramezanzadeh, J. Rostami, and R. Kastner. Performance prediction models for hard rock tunnel boring machines. In Proceedings of Sixth Iranian Tunneling Conference, Tehran, Iran, 2004.
  
[92] J. Rojek and E. O~nate. Multiscale analysis using a coupled discrete/finite element model. Interaction and Multiscale Mechanics, 1(1):1{31, 2007.
+
[92] J. Rojek and E. Oñate. Multiscale analysis using a coupled discrete/finite element model. Interaction and Multiscale Mechanics, 1(1):1-31, 2007.
  
[93] J. Rojek, E. O~nate, F. Zarate, and J. Miquel. Modelling of rock, soil and granular materials using spherical elements. In 2nd European Conference on Computational Mechanics ECCM-2001, Cracow, Poland, June 2001.
+
[93] J. Rojek, E. Oñate, F. Zarate, and J. Miquel. Modelling of rock, soil and granular materials using spherical elements. In 2nd European Conference on Computational Mechanics ECCM-2001, Cracow, Poland, June 2001.
  
[94] J. Rojek, E. O~nate, F. Zárate, and J. Miquel Canet. Thermomechanical discrete element formulation for wear analysis of rock cutting tools. Technical report, CIMNE, Barcelona, 2004.
+
[94] J. Rojek, E. Oñate, F. Zárate, and J. Miquel Canet. Thermomechanical discrete element formulation for wear analysis of rock cutting tools. Technical report, CIMNE, Barcelona, 2004.
  
 
[95] J. Rostami. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modelling and physical measurement of crushed zone pressure. PhD thesis, Colorado School of Mines, 1997.
 
[95] J. Rostami. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modelling and physical measurement of crushed zone pressure. PhD thesis, Colorado School of Mines, 1997.
  
[96] J. Rostami. Hard rock TBM cutterhead modeling for design and performance prediction. Geomechanik und Tunnelbau, 1:18{28, 2008.
+
[96] J. Rostami. Hard rock TBM cutterhead modeling for design and performance prediction. Geomechanik und Tunnelbau, 1:18-28, 2008.
  
 
[97] J. Rostami and L. Ozdemir. A new model for performance prediction of hard rock TBMs. In Rapid Excavation and Tunneling Conference RETC. Boston, USA, 1993.
 
[97] J. Rostami and L. Ozdemir. A new model for performance prediction of hard rock TBMs. In Rapid Excavation and Tunneling Conference RETC. Boston, USA, 1993.
  
[98] J. Rostami, L. Ozdemir, and B. Nilsen. Comparison between CMS and NTH hard rock TBM performance prediction models. In Annual Technical Meeting of the Institute of Shaft Drilling and Technology (ISDT), pages 1{11, 1996.
+
[98] J. Rostami, L. Ozdemir, and B. Nilsen. Comparison between CMS and NTH hard rock TBM performance prediction models. In Annual Technical Meeting of the Institute of Shaft Drilling and Technology (ISDT), pages 1-11, 1996.
  
[99] E. Rougier, A. Munjiza, and N. W. M. John. Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics. Int. J. Numer. Meth. Engng., 61(6):856{879, 2004.
+
[99] E. Rougier, A. Munjiza, and N. W. M. John. Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics. Int. J. Numer. Meth. Engng., 61(6):856-879, 2004.
  
[100] F. Roxborough and H. Phillips. Rock excavation by disc cutter. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 12:361{366, 1975.
+
[100] F. Roxborough and H. Phillips. Rock excavation by disc cutter. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 12:361-366, 1975.
  
[101] H. Sanio. Prediction of the performance of disc cutters in anisotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 22(3):153{161, 1985.
+
[101] H. Sanio. Prediction of the performance of disc cutters in anisotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 22(3):153-161, 1985.
  
[102] M. Satake. Tensorial form definitions of discrete-mechanical quantities for granular assemblies. International Journal of Solids and Structures, 41(21):5775{5791, 2004.
+
[102] M. Satake. Tensorial form definitions of discrete-mechanical quantities for granular assemblies. International Journal of Solids and Structures, 41(21):5775-5791, 2004.
  
 
[103] K. Sato, G. F., and K. Itakura. Prediction of disc cutter performance using a circular rock cutting ring. In Proceedings 1st International Mine Mechanization and Automation Symposium, Golden Colorado, USA, 1991.
 
[103] K. Sato, G. F., and K. Itakura. Prediction of disc cutter performance using a circular rock cutting ring. In Proceedings 1st International Mine Mechanization and Automation Symposium, Golden Colorado, USA, 1991.
  
[104] T. G. Sitharam and M. Nimbkar. Numerical modelling of the micromechanical behaviour of granular media by discrete element. Geotechnical Engineering Bulletin, 6(4):261{283, 1997.
+
[104] T. G. Sitharam and M. Nimbkar. Numerical modelling of the micromechanical behaviour of granular media by discrete element. Geotechnical Engineering Bulletin, 6(4):261-283, 1997.
  
[105] D. Stoyan. Random set: Models and statistics. International Statistical Review, 66:1{27, 1998.
+
[105] D. Stoyan. Random set: Models and statistics. International Statistical Review, 66:1-27, 1998.
  
[106] O. Su and N. A. Akcin. Numerical simulation of rock cutting using the discrete element method. International Journal of Rock Mechanics and Mining Sciences, 48(3):434{442, 2011.
+
[106] O. Su and N. A. Akcin. Numerical simulation of rock cutting using the discrete element method. International Journal of Rock Mechanics and Mining Sciences, 48(3):434-442, 2011.
  
[107] L. Taylor and D. Preece. Simulation of blasting induced rock motion. Eng. Comput., 9(2):243{252, 1992.
+
[107] L. Taylor and D. Preece. Simulation of blasting induced rock motion. Eng. Comput., 9(2):243-252, 1992.
  
[108] M. Tuckerman, B. Berne, and G. Martyna. Reply to comment on: Reversible multiple time scale molecular dynamics. Journal of Chemical Physics, 99:2278{2279, 1993.
+
[108] M. Tuckerman, B. Berne, and G. Martyna. Reply to comment on: Reversible multiple time scale molecular dynamics. Journal of Chemical Physics, 99:2278-2279, 1993.
  
[109] K. Walton. The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35(2):213{226, 1987.
+
[109] K. Walton. The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35(2):213-226, 1987.
  
[110] S. Xiao and T. Belytschko. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 193:1645{1669, 2004.
+
[110] S. Xiao and T. Belytschko. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 193:1645-1669, 2004.
  
[111] S. Yagiz, J. Rostami, T. Kim, L. Ozdemir, and C. Merguerian. Factors in fluencing performance of hard rock tunnel boring machines. In Rock Engineering in Dificult Ground Conditions { Soft Rocks and Karst. Taylor & Francis Group, 2010.
+
[111] S. Yagiz, J. Rostami, T. Kim, L. Ozdemir, and C. Merguerian. Factors in fluencing performance of hard rock tunnel boring machines. In Rock Engineering in Dificult Ground Conditions - Soft Rocks and Karst. Taylor & Francis Group, 2010.
  
[112] B. Yang, Y. Jiao, and S. Lei. A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 23(6):607{631, 2006.
+
[112] B. Yang, Y. Jiao, and S. Lei. A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 23(6):607-631, 2006.
  
[113] Y. Yua, J. Yinb, and Z. Zhong. Shape effects in the brazilian tensile strength test and a 3D FEM correction. International Journal of Rock Mechanics and Mining Sciences 2006, 43:623{627, 2006.
+
[113] Y. Yua, J. Yinb, and Z. Zhong. Shape effects in the brazilian tensile strength test and a 3D FEM correction. International Journal of Rock Mechanics and Mining Sciences 2006, 43:623-627, 2006.
  
 
[114] O. Zienkiewicz and R. Taylor. The Finite Element Method (5th Ed.). Butterworth-Hienemann, 2000.
 
[114] O. Zienkiewicz and R. Taylor. The Finite Element Method (5th Ed.). Butterworth-Hienemann, 2000.

Latest revision as of 16:17, 14 July 2017

Abtract

Modelling of granular materials, soils and rocks has been a challenging topic of investigation for decades. Classical continuum mechanics has been used to idealize soils and rocks, and numerical solution techniques such as finite element method (FEM) has been used to model these materials. Considering the idealization of the material, continuum mechanics allows the analysis of phenomena with discontinuous nature such as fracture in rock or soil via damage models. However, in more complex processes like rock milling or crushing, this kind of models are usually not suitable. Discrete models are more appropriate for problems with multiple discontinuities and particulate materials. The discrete element method (DEM) has been gaining popularity in analysis of granular materials, soils and rocks. Many aspects of this method still require more profound investigation.

This work presents new developments of the discrete element method improving efficiency and accuracy of modelling of rock-like materials, especially in excavation processes. All the numerical algorithms has been implemented in an in-house software, which was then used to run numerical examples.

The basic formulation of DEM with linear elastic-perfectly brittle contact model is presented. The main difference with other models found in the literature is the consideration of global stiffness and strength parameters that are constants in the whole model.

The result of a simulations is strongly related with the configuration of the particle assembly used. Particle assemblies should be suficiently compact and ensure the isotropy to reproduce the physical properties of the modelled material. This work presents a novel technique for the generation of highly dense particle assemblies in arbitrary geometries, satisfying all the requirements for accurate discrete element simulations.

One of the key issues in the use of the DEM is the estimation of the contact model parameters. A methodology is proposed for the estimation of the contact model parameters yielding required macroscopic properties of the material. The relationships between the contact model parameters and the mechanical properties of brittle materials, as well as the influence of the particles assembly configuration on the macroscopic properties, are analysed.

A major dificulty in the application of the DEM to real engineering problems is the high computational cost in simulation involving a large number of particles. The most common way to solve this is the use of parallel computing techniques, where multiple processors are used. As an alternative, a coupling scheme between DEM and the finite element method (FEM) is proposed in the work. Within the hybrid DEM/FEM model, DEM is only used in the region of the domain where it provides an advantage over a continuum-based approach, as the FEM. The coupling is dynamically adapted, starting with the whole domain discretized with FEM. During the simulation, in the regions where a high stress level are found, a change of modelling method from continuum FEM to the discrete DEM is employed.

Finally, all the developments are applied to the simulation of a real excavation process. An analysis of the rock cutting process with TBM disc cutters is performed, where DEM and the DEM/FEM coupling technique presents an important advantage over other simulation techniques.

PDF file

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

References

[1] O. Acaroglu, L. Ozdemir, and B. Asbury. A fuzzy logic model to predict specific energy requirement for tbm performance prediction. Tunnelling and Underground Space Technology, 23(5):600-608, 2008.

[2] I. Agnolin and N. Kruyt. On the elastic moduli of two-dimensional assemblies of disks: Relevance and modeling of fluctuations in particle displacements and rotations. Int. J. Computers and Mathematics with Applications, 55(2):245-256, 2008.

[3] I. Agnolin and J.-N. Roux. On the elastic moduli of three-dimensional assemblies of spheres: Characterization and modeling of fluctuations in the particle displacement and rotation. Int. J. of Solids and Structures, 45:1101-1123, 2008.

[4] B. J. Alder and T. E. Wainwright. Studies in molecular dynamics. I. General method. The Journal of Chemical Physics, 31(2):459-466, 1959.

[5] J. Argyris. An excursion into large rotations. Comput. Meth. Appl. Mech. Eng., 32:85-155, 1982.

[6] K. Bagi. A quasi-static numerical model for micro-level analysis of granular assemblies. Mechanics of Materials, 16(1-2):101-110, 1993.

[7] K. Bagi. Stress and strain in granular assemblies. Mechanics of Materials, 22(3):165-177, 1996.

[8] K. Bagi. An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter, 7:31-43, 2005.

[9] K. Bagi. Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids and Structures, 43:3166-3184, 2006.

[10] C. Balci and N. Bilgin. Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines. International Journal of Rock Mechanics and Mining Sciences, 44:468-476, 2007.

[11] M. Bargiel. Geometrical properties of simulated packings of spherocylinders. In Computational Science - ICCS 2008, volume 5102 of Lecture Notes in Computer Science, pages 126-135. Springer Berlin / Heidelberg, 2008.

[12] K. Bathe and E. Wilson. Numerical Methods in Finite Element Analysis. Prentice Hall, 1976.

[13] R. Bathurst and L. Rothenburg. Micromechanical aspects of isotropic granular assemblies with linear contact interactions. Journal of Applied Mechanics, ASME, 55(1):17-23, 1988.

[14] T. Belytschko, P. Smolinski, and W. Liu. Stability of multi-time step partitioned integrators for the first order finite element systems. Comput. Meth. Appl. Mech. Eng., 49:281-297, 1985.

[15] D. Benson and J. Hallquist. A simple rigid body algorithm for structural dynamics programs. Int. J. Num. Meth. Eng., 12:723-749, 1986.

[16] H. Brandt. A study of the speed of sound in porous granular media. Journal of Applied Mechanics, ASME, 22:479-486, 1955.

[17] B. Cambou. Micromechanical approach in granular materials. In Behaviour of Granular Materials, volume 385, pages 170-216. Springer Wien, 1998.

[18] B. Cambou, M. Chaze, and F. Dedecker. Change of scale in granular materials. Eur. J. Mech. A/Solids, 19:999-1014, 2000.

[19] J. M. Carbonell. Modeling of ground excavation with the particle finite element method. PhD thesis, Escola Técnica Superior d'Enginers de Camins Canals i Ports, Universitat Politécnica de Catalunya, 2009.

[20] M. Cervera and M. Chiumenti. Mesh objective tensile cracking via a local continuum damage model and crack tracking technique. Computer Methods in Applied Mechanics and Engineering, 196(1-3):304-320, 2006.

[21] M. Cervera, M. Chiumenti, Q. Valverde, and C. A. de Saracibar. Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Computer Methods in Applied Mechanics and Engineering, 192(49-50):5249-5263, 2003.

[22] M. Cervera, L. Pelá, R. Clemente, and P. Roca. A crack-tracking technique for localized damage in quasi-brittle materials. Engineering Fracture Mechanics, 77(13):2431-2450, 2010.

[23] C. Chang and A. Misra. Theoretical and experimental study of regular packing of granules. Journal of Engineering Mechanics, ASCE, 115(4):704-720, 1989.

[24] C. Chang and A. Misra. Packing structure and mechanical properties of granulates. Journal of Engineering Mechanics, 116(5):1077-1093, 1990.

[25] C. Chang, Q. Shi, and C. Liao. Elastic constants for granular materials modeled as first-order strain-gradient continua. Int. J. Solids and Structures, 40:5565-5582, 2003.

[26] C. S. Chang and J. Gao. Second-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Structures, 32(16):2279-2293, 1995.

[27] M. Chiumenti, Q. Valverde, C. Agelet de Saracibar, and M. Cervera. A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput. Meth. Appl. Mech. Eng., 191:5253-5264, 2002.

[28] M. Chiumenti, Q. Valverde, C. A. de Saracibar, and M. Cervera. A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra. International Journal of Plasticity, 20(8-9):1487-1504, 2004.

[29] J.-W. Cho, S. Jeon, S.-H. Yu, and S.-H. Chang. Optimum spacing of tbm disc cutters: A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology, 25(3):230-244, 2010.

[30] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Meth. Appl. Mech. Eng., 190:1579-1599, 2000.

[31] R. Codina and J. Blasco. Stabilized finite element method for transient Navier-Stokes equations based on pressure gradient projection. Comput. Meth. Appl. Mech. Eng., 182:287-300, 2000.

[32] L. Cui and C. O'Sullivan. Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granular Matter, 5:135-145, 2003.

[33] P. Cundall and O. Strack. A discrete numerical method for granular assemblies. Geotechnique, 29:47-65, 1979.

[34] P. A. Cundall. A computer model for simulating progressive, large-scale movements in blocky rock systems. In Symp. Int. Soc. Rock Mech., volume 2, pages 132-150, Nancy, 1971.

[35] P. A. Cundall. A computer model for rock-mass behaviour using interactive graphics for the input and output of geometrical data. Technical report, Report for the Missouri River Division, U.S. Army Corps of Engineers, University of Minnesota, 1974.

[36] P. A. Cundall and R. D. Hart. Numerical modeling of discontinua. Engineering Computations, 9:101-113, 1992.

[37] P. G. de Gennes. Granular matter: A tentative view. Rev. Mod. Phys., 71(2):S374-S382, 1999.

[38] H. Deresiewicz. Mechanics of granular matter. In Advances in Applied Mechanics, volume 5, pages 233-306. Elsevier, 1958.

[39] P. Digby. The effective elastic moduli of porous granular rocks. Journal of Applied Mechanics, 48:803-808, 1981.

[40] F. Donzé, P. Mora, and S.-A. Magnier. Numerical simulation of faults and shear zones. Geophysical Journal International, 116:46-52, 1994.

[41] O. Durán, N. Kruyt, and S. Luding. Analysis of three-dimensional micro-mechanical strain formulations for granular materials: Evaluation of accuracy. International Journal of Solids and Structures, 47(2):251-260, 2010.

[42] R. N. Elias, M. A. Martins, and A. L. Coutinho. Simple finite element-based computation of distance functions in unstructured grids. International Journal for Numerical Methods in Engineering, 72(9):1095-1110, 2007.

[43] EMI. Excavation Engineering and Earth Mechanics Institute. Colorado School of Mines. http://mining.mines.edu/emi.

[44] EN1926. Natural stone test methods - Determination of compressive strength. European committee for standarization. Brussels, 1999.

[45] J. Evans. Random and cooperative sequential adsorption. Reviews of Modern Physics, 65(4):1281-1304, 1993.

[46] G. Exadaktylos, M. Stavropoulou, G. Xiroudakis, M. de Broissia, and H. Schwarz. A spatial estimation model for continuous rock mass characterization from the specific energy of a TBM. Rock Mechanics and Rock Engineering, 41:797-834, 2008.

[47] A. Fakhimi and T. Villegas. Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture. Rock Mech. Rock Engng., 40(2):193-211, 2007.

[48] E. Farrokh, J. Rostami, and C. Laughton. Study of various models for estimation of penetration rate of hard rock TBMs. Tunnelling and Underground Space Technology, 30:110-123, 2012.

[49] Y. T. Feng, K. Han, and D. R. J. Owen. Filling domains with disks: an advancing front approach. Int. J. Numer. Meth. Engng., 56:699-713, 2003.

[50] J.-A. Ferrez. Dynamic triangulations for efficient 3D simulation of granular materials. PhD thesis, École Polytechnique Fédérale De Lausanne, 2001.

[51] J.-A. Ferrez and T. Liebling. Robust 3D dynamic triangulations for collision detection in DEM simulations of granular materials. EPFL Supercomputing Review, 13:41-48, 2002.

[52] E. Forest and R. Ruth. Fourth-order symplectic integration. Physica D, 43:105-117, 1990.

[53] J. Gálvez, M. Elices, G. Guinea, and J. Planas. Mixed mode fracture of concrete under proportional and nonproportional loading. International Journal of Fracture, 94:267-284, 1998.

[54] R. Gertsch, L. Gertsch, and J. Rostami. Disc cutting tests in Colorado Red Granite: Implications for TBM performance prediction. International Journal of Rock Mechanics and Mining Sciences, 44(2):238-246, 2007.

[55] O. Häggströon and R. Meester. Nearest neighbour and hard sphere models in continuum percolation. Random Structures and Algorithms, 9:295-315, 1996.

[56] J. Haile. Molecular dynamics simulation: Elementary methods. Wiley-Interscience, 1997. [57] K. Han, Y. Feng, and D. Owen. Sphere packing with a geometric based compression algorithm. Powder Technology, 155(1):33-41, 2005.

[58] S. Hentz, L. Daudeville, and F. V. Donzé. Identification and validation of a discrete element model for concrete. Journal of Engineering Mechanics, 130(6):709-719, 2004.

[59] S. Hentz, F. V. Donzé, and L. Daudeville. Discrete element modelling of concrete submitted to dynamic loading at high strain rates. Computers and Structures, 82(29-30):2509-2524, 2004.

[60] H. Hertz. Über die berührung fester elasticher körper (On the contact of elastic solids). Journal für die reine und angewandte Mathematik, 92:156-171, 1882.

[61] R. Hill. Elastic properties of reinforced solids: Some theoretical principles. Journal of Mechanics and Physics of Solids, 11:357-372, 1963.

[62] H. Huang. Discrete element modeling of tool-rock interaction. PhD thesis, University of Minnesota, December 1999.

[63] H. Huang and E. Detournay. Intrinsic length scales in tool-rock interaction. International Journal of Geomechanics, 8(1):39-44, 2008.

[64] Itasca. PDF2D 2.0 Particule ow code in two dimensions. Minneapolis, MN, 1998.

[65] S. Ji and H. H. Shen. Effect of contact force models on granular flow dynamics. J. Engrg. Mech., 132(11):1252-1259, 2006.

[66] H. Kruggel-Emden, M. Sturma, S. Wirtza, and V. Scherera. Selection of an appropriate time integration scheme for the discrete element method (DEM). Computers & Chemical Engineering, 32(10):2263-2279, 2008.

[67] N. Kruyt and L. Rothenburg. Statistics of the elastic behaviour of granular materials. Int. J. Solids and Structures, 38(28-29):4879-4899, 2001.

[68] N. P. Kruyt and L. Rothenburg. Micromechanical definition of the strain tensor for granular materials. Journal of Applied Mechanics, 118:706-711, 1996.

[69] N. P. Kruyt and L. Rothenburg. Micromechanical bounds for the effective elastic moduli of granular materials. International Journal of Solids and Structures, 39(2):311-324, 2002.

[70] M. R. Kuhn. Structured deformation in granular materials. Mechanics of Materials, 31:407-429, 1999.

[71] C. Labra, J. Rojek, E. Oñate, and F. Köppl. Tunconstruct D2.1.3.3: Report of numerical modeling of disc cutter wear. Technical report, CIMNE, 2008.

[72] C. Labra, J. Rojek, E. Oñate, and F. Zarate. Advances in discrete element modelling of underground excavations. Acta Geotechnica, 3(4):317-322, 2008.

[73] H. Langhaar. Dimensional Analysis and Theory of Models. Wiley, 1951.

[74] K. Levenberg. A method for the solution of certain problems in least squares. Quart. Appl. Math., 2:164-168, 1944.

[75] C.-L. Liao, T.-P. Chang, and D.-H. Young. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal in Solids and Structures, 34(31-32):4087-4100, 1997.

[76] X. Lin and T.-T. Ng. A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique, 47(2):319-329, 1997.

[77] R. Löhner and E. Oñate. A general advancing front technique for filling space with arbitrary objects. International Journal for Numerical Methods in Engineering, 61(12):1977-1991, 2004.

[78] B. Lubachevsky and F. Stillinger. Geometrik properties of random disk packings. J. Stat. Phys., 60:561-583, 1990.

[79] S. Luding. Micro-macro transition for anisotropic, frictional granular packings. International Journal of Solids and Structures, 41(21):5821-5836, 2004.

[80] D. Marquardt. An algorithm for least square estimation on nonlinear parameters. SIAM J. Appl. Math., 11:431-441, 1963.

[81] R. D. Mindlin and H. Deresiewicz. Elastic spheres in contact under varying oblique forces. J. Appl. Mech., 20:327-344, 1953.

[82] B. Nilsen and L. Ozdemir. Hard rock tunnel boring prediction and field performance. In Rapid Excavation and Tunneling Conference RETC, 1993.

[83] I. Omelyan, I. Mryglod, and R. Folk. Symplectic analytically integrable decomposition algorithms: classification, derivation, and application to molecular dynamics, quantum and celestial mechanics simulations. Computer Physics Communications, 151:272-314, 2003.

[84] E. Oñate and J. Rojek. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Computer Methods in Applied Mechanics and Engineering, 193(27-29):3087-3128, 2004.

[85] E. Oñate, J. Rojek, R. Taylor, and O. Zienkiewicz. Finite calculus form for incompresible solids using linear triangles and tetrahedra. Int. J. Numer. Meth. Engng., 59:1473-1500, 2004.

[86] C. O'Sullivan and J. D. Bray. Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Engineering Computations, 21(2/3/4):278-303, 2004.

[87] L. Ozdemir. Development of theoretical equations for predicting tunnel borability. PhD thesis, Colorado School of Mines, Golden, Colorado, USA, 1977.

[88] D. Potyondy and P. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41(8):1329-1364, 2004. Rock Mechanics Results from the Underground Research Laboratory, Canada.

[89] D. Potyondy, P. Cundall, and C. Lee. Modelling rock using bonded assemblies of circular particles. In M. Aubertin, F. Hassani, and H. Mitri, editors, 2nd NARMS, Rock Mechanics Tools and Techniques, pages 1937-1944, Montreal, June 1996.

[90] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev., 136(2A):A405-A411, 1964.

[91] A. Ramezanzadeh, J. Rostami, and R. Kastner. Performance prediction models for hard rock tunnel boring machines. In Proceedings of Sixth Iranian Tunneling Conference, Tehran, Iran, 2004.

[92] J. Rojek and E. Oñate. Multiscale analysis using a coupled discrete/finite element model. Interaction and Multiscale Mechanics, 1(1):1-31, 2007.

[93] J. Rojek, E. Oñate, F. Zarate, and J. Miquel. Modelling of rock, soil and granular materials using spherical elements. In 2nd European Conference on Computational Mechanics ECCM-2001, Cracow, Poland, June 2001.

[94] J. Rojek, E. Oñate, F. Zárate, and J. Miquel Canet. Thermomechanical discrete element formulation for wear analysis of rock cutting tools. Technical report, CIMNE, Barcelona, 2004.

[95] J. Rostami. Development of a force estimation model for rock fragmentation with disc cutters through theoretical modelling and physical measurement of crushed zone pressure. PhD thesis, Colorado School of Mines, 1997.

[96] J. Rostami. Hard rock TBM cutterhead modeling for design and performance prediction. Geomechanik und Tunnelbau, 1:18-28, 2008.

[97] J. Rostami and L. Ozdemir. A new model for performance prediction of hard rock TBMs. In Rapid Excavation and Tunneling Conference RETC. Boston, USA, 1993.

[98] J. Rostami, L. Ozdemir, and B. Nilsen. Comparison between CMS and NTH hard rock TBM performance prediction models. In Annual Technical Meeting of the Institute of Shaft Drilling and Technology (ISDT), pages 1-11, 1996.

[99] E. Rougier, A. Munjiza, and N. W. M. John. Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics. Int. J. Numer. Meth. Engng., 61(6):856-879, 2004.

[100] F. Roxborough and H. Phillips. Rock excavation by disc cutter. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 12:361-366, 1975.

[101] H. Sanio. Prediction of the performance of disc cutters in anisotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 22(3):153-161, 1985.

[102] M. Satake. Tensorial form definitions of discrete-mechanical quantities for granular assemblies. International Journal of Solids and Structures, 41(21):5775-5791, 2004.

[103] K. Sato, G. F., and K. Itakura. Prediction of disc cutter performance using a circular rock cutting ring. In Proceedings 1st International Mine Mechanization and Automation Symposium, Golden Colorado, USA, 1991.

[104] T. G. Sitharam and M. Nimbkar. Numerical modelling of the micromechanical behaviour of granular media by discrete element. Geotechnical Engineering Bulletin, 6(4):261-283, 1997.

[105] D. Stoyan. Random set: Models and statistics. International Statistical Review, 66:1-27, 1998.

[106] O. Su and N. A. Akcin. Numerical simulation of rock cutting using the discrete element method. International Journal of Rock Mechanics and Mining Sciences, 48(3):434-442, 2011.

[107] L. Taylor and D. Preece. Simulation of blasting induced rock motion. Eng. Comput., 9(2):243-252, 1992.

[108] M. Tuckerman, B. Berne, and G. Martyna. Reply to comment on: Reversible multiple time scale molecular dynamics. Journal of Chemical Physics, 99:2278-2279, 1993.

[109] K. Walton. The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids, 35(2):213-226, 1987.

[110] S. Xiao and T. Belytschko. A bridging domain method for coupling continua with molecular dynamics. Computer Methods in Applied Mechanics and Engineering, 193:1645-1669, 2004.

[111] S. Yagiz, J. Rostami, T. Kim, L. Ozdemir, and C. Merguerian. Factors in fluencing performance of hard rock tunnel boring machines. In Rock Engineering in Dificult Ground Conditions - Soft Rocks and Karst. Taylor & Francis Group, 2010.

[112] B. Yang, Y. Jiao, and S. Lei. A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 23(6):607-631, 2006.

[113] Y. Yua, J. Yinb, and Z. Zhong. Shape effects in the brazilian tensile strength test and a 3D FEM correction. International Journal of Rock Mechanics and Mining Sciences 2006, 43:623-627, 2006.

[114] O. Zienkiewicz and R. Taylor. The Finite Element Method (5th Ed.). Butterworth-Hienemann, 2000.

Back to Top

Document information

Published on 01/01/2012

Licence: CC BY-NC-SA license

Document Score

0

Views 100
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?