(Created page with "== Abstract == En la literatura mundial, se encuentran muy bien establecidos los beneficios que presenta el proceso de granallado. Sin embargo, este proceso es una tarea de d...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
== Abstract == | == Abstract == | ||
− | + | In the open literatura around the world, it has been very well established the benefits that produces the shot peening process. Nevertheless, this process is a task, in some of the cases, of the development of handcrafted and/ or dependent on the experience of the workman. One of the principal virtues of this process, is the strengthening of the surface and increase in the yield stress of the material. This strengthening or increase of the resistance in the material, owes to the induction of a residual stress field of compressive type. The induction of this type of effect is extremely beneficial for the component, since this operation does that the elements submitted to cyclical loads raise its fatigue resistance (crack propagation)on the surface and could have hereby a longer useful life, and in the order hand, the applied loads to these elements could raise considerably. In this article, it is presented a comparison of the obtained residual stress field by shot peening by two methods, by the analytical and the finite element method (FEM), in order to obtain a confinable method for the evaluation of residual stresses, which approaches in major measurement to the registered ones by the experimental procedure. The numerical analysis performed in this work, it was done by 2D simulation, considering quasi-static conditions and not accounting random shot in the shot peening process. Also it is present the results obtained in the effect that the ball size produced. Hereby, in a later analyses, it will be possible to do an evaluation of the best results obtained by means of the FEM, changing certain factors that throw the suitable conditions of the parameters in the experimental tests, reducing cost and time. | |
== Full document == | == Full document == | ||
<pdf>Media:draft_Content_602844128RR263F.pdf</pdf> | <pdf>Media:draft_Content_602844128RR263F.pdf</pdf> |
In the open literatura around the world, it has been very well established the benefits that produces the shot peening process. Nevertheless, this process is a task, in some of the cases, of the development of handcrafted and/ or dependent on the experience of the workman. One of the principal virtues of this process, is the strengthening of the surface and increase in the yield stress of the material. This strengthening or increase of the resistance in the material, owes to the induction of a residual stress field of compressive type. The induction of this type of effect is extremely beneficial for the component, since this operation does that the elements submitted to cyclical loads raise its fatigue resistance (crack propagation)on the surface and could have hereby a longer useful life, and in the order hand, the applied loads to these elements could raise considerably. In this article, it is presented a comparison of the obtained residual stress field by shot peening by two methods, by the analytical and the finite element method (FEM), in order to obtain a confinable method for the evaluation of residual stresses, which approaches in major measurement to the registered ones by the experimental procedure. The numerical analysis performed in this work, it was done by 2D simulation, considering quasi-static conditions and not accounting random shot in the shot peening process. Also it is present the results obtained in the effect that the ball size produced. Hereby, in a later analyses, it will be possible to do an evaluation of the best results obtained by means of the FEM, changing certain factors that throw the suitable conditions of the parameters in the experimental tests, reducing cost and time.
Published on 01/07/10
Accepted on 01/07/10
Submitted on 01/07/10
Volume 26, Issue 3, 2010
Licence: CC BY-NC-SA license
Are you one of the authors of this document?