(Created page with "== Abstract == En este artículo se describe una implementación del método Local Discontinuous Galerkin (LDG) aplicado a problemas elípticos en 2D para mallas no conformes...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
== Abstract ==
 
== Abstract ==
  
En este artículo se describe una implementación del método Local Discontinuous Galerkin (LDG) aplicado a problemas elípticos en 2D para mallas no conformes con elementos rectilíneos. Esta implementación toma ventaja de algunas de las propiedades intrínsecas del método, en particular el uso de aproximaciones de orden variable y de mallas no conformes con un número arbitrario fijo de nodos colgantes. Estructuras de datos eficientes que permiten un rápido ensamblado del sistema lineal en su formulación mixta son descritas en detalle. Esta implementación puede ser utilizada como base para el desarrollo de códigos hp adaptativos. Summary This article describes an implementation of the Local Discontinuous Galerkin (LDG) method applied to a general elliptic boundary value problem in 2D. The implementation takes advantage of some intrinsic properties of the method, in particular, the use of non conforming meshes with an arbitrary but fixed number of hanging nodes and polynomial approximations with variable degree. A detailed description of efficient data structures yielding a fast assembly of the linear system in its mixed formulation is presented. This implementation can be used as a model for hp adaptive codes.
+
This article describes an implementation of the Local Discontinuous Galerkin (LDG) method applied to a general elliptic boundary value problem in 2D. The implementation takes advantage of some intrinsic properties of the method, in particular, the use of non conforming meshes with an arbitrary but fixed number of hanging nodes and polynomial approximations with variable degree. A detailed description of efficient data structures yielding a fast assembly of the linear system in its mixed formulation is presented. This implementation can be used as a model for hp adaptive codes.
  
 
== Full document ==
 
== Full document ==
 
<pdf>Media:draft_Content_873624290RR264C.pdf</pdf>
 
<pdf>Media:draft_Content_873624290RR264C.pdf</pdf>

Latest revision as of 10:53, 14 June 2017

Abstract

This article describes an implementation of the Local Discontinuous Galerkin (LDG) method applied to a general elliptic boundary value problem in 2D. The implementation takes advantage of some intrinsic properties of the method, in particular, the use of non conforming meshes with an arbitrary but fixed number of hanging nodes and polynomial approximations with variable degree. A detailed description of efficient data structures yielding a fast assembly of the linear system in its mixed formulation is presented. This implementation can be used as a model for hp adaptive codes.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 01/10/10
Accepted on 01/10/10
Submitted on 01/10/10

Volume 26, Issue 4, 2010
Licence: CC BY-NC-SA license

Document Score

0

Views 16
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?