(Created page with "==1 Title, abstract and keywords== Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations a...")
 
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==1 Title, abstract and keywords==
+
== Abstract ==
 +
Since its invention in the 1960s, Computed Tomography has become one of the most powerful and versatile non-destructive imaging tools, with applications ranging from biomedicine to concrete technology. For about two decades, it is also common to use CT images as the basis for Finite Element modeling of the scanned objects. Thereby, the main focus has been classically laid upon the accurate representation of geometrical details, while particularly for solids made up of natural non-homogeneous materials, the question of material property assignment has remained an open challenge over the years.
 +
Since 2008 [<span id='cite-1'></span>[[#1|1]]], our group, in cooperation with colleagues from Germany, Italy, Russia, Poland, Belgium, and Iceland [<span id='cite-1'></span>[[#1|1]]-<span id='cite-5'></span>[[#5|5]]], has been deeply involved in overcoming this challenge, by more deeply studying the X-ray physics underlying Computed Tomography: we developed increasingly mature methods to retrieve, from the grey value-defined voxel characteristics given in CT images, the actually underlying physical property, called X-ray attenuation coefficient. The latter contains information on the chemical composition of the material making up the considered voxel, and combining this information with known chemical characteristics of the material class making up the scanned object, gives access to important microstructural information inside the voxel, such as microporosity, or contents of known chemical substances. The latter then enter, as input values, experimentally validated micromechanical formulations representing the material inside the voxel, so as to reliably determine the voxel’s mechanical properties. Corresponding CT-to-mechanics conversion schemes will be presented in appropriate detail, with applications ranging from various ceramics [<span id='cite-2'></span>[[#2|2]], <span id='cite-3'></span>[[#3|3]], <span id='cite-6'></span>[[#6|6]]] and polymer-ceramic composites [<span id='cite-4'></span>[[#4|4]]] used in tissue engineering, to organs made up of the natural material bone [<span id='cite-1'></span>[[#1|1]],<span id='cite-5'></span>[[#5|5]]].
  
Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title.
+
== Recording of the presentation ==
 
+
{| style="font-size:120%; color: #222222; border: 1px solid darkgray; background: #f3f3f3; table-layout: fixed; width:100%;"
Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes.
+
|-  
 
+
| {{#evt:service=youtube|id=https://youtu.be/FIVuRJMtbQI | alignment=center}}
An abstract is required for every paper; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.
+
|- style="text-align: center;"  
 
+
| Location: San Servolo Complex.  
==2 The main text==
+
|- style="text-align: center;"
 
+
| Date: 18 - 20 May 2015, San Servo Island, Venice, Italy.
You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option.
+
 
+
Most of the papers in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific journals in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English.
+
 
+
===2.1 Subsections===
+
 
+
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings.
+
 
+
===2.2 General guidelines===
+
 
+
Some general guidelines that should be followed in your manuscripts are:
+
 
+
:*  Avoid hyphenation at the end of a line.
+
 
+
:*  Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics.
+
 
+
:*  Use decimal points (not commas); use a space for thousands (10 000 and above).
+
 
+
:*  Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI.
+
 
+
===2.3 Tables, figures, lists and equations===
+
 
+
Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text (<span id='cite-_Ref382560620'></span>[[#_Ref382560620|table 1]], table 2, etc.) and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article.
+
 
+
<span id='_Ref382560620'></span>
+
{| style="margin: 1em auto 1em auto;border: 1pt solid black;border-collapse: collapse;"
+
|-
+
| style="text-align: center;"|Thickness
+
| style="text-align: center;"|3.175 mm
+
|-
+
| style="text-align: center;"|Young Modulus
+
| style="text-align: center;"|12.74 MPa
+
|-
+
| style="text-align: center;"|Poisson coefficient
+
| style="text-align: center;"|0.25
+
|-
+
| style="text-align: center;"|Density
+
| style="text-align: center;"|1107 kg/m<sup>3</sup>
+
 
|}
 
|}
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Table 1: Material properties</span></div>
 
  
Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript.
 
  
<span id='_Ref448852946'></span>
+
== General Information ==
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
* Location: San Servolo Complex, Venice, Italy.
[[Image:Scipedia.gif|center|480px]]
+
* Date: 18 - 20 May 2015, San Servo Island, Venice, Italy.
</div>
+
* Secretariat: [//www.cimne.com/ International Center for Numerical Methods in Engineering (CIMNE)].
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span style="text-align: center; font-size: 75%;">Figure 1. Scipedia logo.</span></div>
+
  
Number the figures according to their sequence in the text (<span id='cite-_Ref448852946'></span>[[#_Ref448852946|figure 1]], figure 2, etc.). Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material
+
== External Links ==
 +
* [//congress.cimne.com/coupled2015/frontal/default.asp IV Coupled] Official Website of the Conference.
 +
* [//www.cimnemultimediachannel.com/ CIMNE Multimedia Channel]
  
For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both.
+
==References==
 
+
1. The first entry in this list
+
 
+
2. The second entry
+
 
+
2.1. A subentry
+
 
+
3. The last entry
+
 
+
* A bulleted list item
+
 
+
* Another one
+
 
+
You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. <span id='cite-_Ref424030152'></span>[[#_Ref424030152|(1)]].
+
 
+
{| style="width: 100%;"
+
|-
+
| style="vertical-align: top;"| <math>{\nabla }^{2}\phi =0</math>
+
| style="text-align: right;"|<span id='_Ref424030152'></span>
+
(1)
+
|}
+
 
+
===2.4 Supplementary material===
+
 
+
Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file.
+
 
+
==3 Bibliography==
+
 
+
<span id='_Ref449344604'></span>
+
Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the paper is [<span id='cite-1'></span>[[#1|1]]], the second [<span id='cite-2'></span>[[#2|2]]], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen (e.g. [<span id='cite-1'></span>[[#1|1]], <span id='cite-3'></span>[[#3|3]]] or [<span id='cite-2'></span>[[#2|2]]-<span id='cite-2'></span>[[#4|4]]]).
+
 
+
<span id='_Ref449084254'></span>
+
You should ensure that all references are cited in the text and that the reference list. References should preferably refer to papers published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [<span id='cite-1'></span>[[#1|1]]], other journal articles [<span id='cite-2'></span>[[#2|2]]], books [<span id='cite-3'></span>[[#3|3]]], book chapter [<span id='cite-4'></span>[[#4|4]]], conference proceedings [<span id='cite-5'></span>[[#5|5]]], and online documents [<span id='cite-6'></span>[[#6|6]]], shown in references section below.
+
 
+
==4 Acknowledgments==
+
 
+
Acknowledgments should be inserted at the end of the paper, before the references section.
+
 
+
==5 References==
+
 
+
<span id='_Ref449083719'></span>
+
 
<div id="1"></div>
 
<div id="1"></div>
[[#cite-1|[1]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Article code. Available: [http://www.scipedia.com/ucode. http://www.scipedia.com/ucode.]
+
[[#cite-1|[1]]] Ch. Hellmich, C. Kober, B. Erdmann, “Micromechanics-based conversion of CT data
 
+
into anisotropic elasticity tensors, applied to FE simulations of a mandible”, Ann Biomed Eng,
 +
Vol. 36(1), pp. 108-122, (2008)
 
<div id="2"></div>
 
<div id="2"></div>
[[#cite-2|[2]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Volume number, first page-last page.
+
[[#cite-2|[2]]] S. Scheiner, R. Sinibaldi, B. Pichler, V. Komlev, C. Renghini, C. Vitale-Brovarone, F.
 
+
Rustichelli, Ch. Hellmich, “Micromechanics of bone tissue-engineering scaffolds, based on
 +
resolution error-cleared computer tomography”, Biomat, Vol. 30, pp. 2411-2419, 2009.
 
<div id="3"></div>
 
<div id="3"></div>
[[#cite-3|[3]]] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
+
[[#cite-3|[3]]] A. Dejaco, V. Komlev, J. Jaroszewicz, W. Swieszkowski, Ch. Hellmich, “Micro CTabsed
 
+
multiscale elasticity of double-porous (pre-cracked) hydroxyapatite granules for
 +
regenerative medicine”, J Biomech Vol. 45, 1068-1075, 2012.
 
<div id="4"></div>
 
<div id="4"></div>
[[#cite-4|[4]]] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
+
[[#cite-4|[4]]] K. Luczynski, A. Dejaco, O. Lahayne, J. Jaroszewicz, W. Swieszkowski, Ch.
 
+
Hellmich, “MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static
 +
Unloading Tests Deliver Consistent Values for Young’s Modulus of Rapid-Prototyped
 +
Polymer-Ceramic Tissue Engineering Scaffold“, CMES, vol.87, no.6, pp.505-528, 2012
 
<div id="5"></div>
 
<div id="5"></div>
[[#cite-5|[5]]] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
+
[[#cite-5|[5]]] R. Blanchard, A. Dejaco, E. Bongaers, Ch. Hellmich, “Intravoxel bone
 
+
micromechanics of microCT-based finite element simulations”, J Biomech, Vol. 40, pp.2710-
 +
2721, 2013.
 
<div id="6"></div>
 
<div id="6"></div>
[[#cite-6|[6]]] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: [http://www.scipedia.com/document.pdf http://www.scipedia.com/document.pdf]. [Accessed day, month and year].
+
[[#cite-6|[6]]] A. Czenek, R. Blanchard, A. Dejaco, O. Sigurjonsson, G. Örlygsson, P. Gargiulo,
 +
Ch. Hellmich, “Quantitative intravoxel analysis of microCT-scanned resorbing ceramic
 +
biomaterials - Perspectives for computer-aided biomaterial design”, J Mat Res, 2014,
 +
conditionally accepted for publication.

Latest revision as of 16:19, 20 July 2016

Abstract

Since its invention in the 1960s, Computed Tomography has become one of the most powerful and versatile non-destructive imaging tools, with applications ranging from biomedicine to concrete technology. For about two decades, it is also common to use CT images as the basis for Finite Element modeling of the scanned objects. Thereby, the main focus has been classically laid upon the accurate representation of geometrical details, while particularly for solids made up of natural non-homogeneous materials, the question of material property assignment has remained an open challenge over the years. Since 2008 [1], our group, in cooperation with colleagues from Germany, Italy, Russia, Poland, Belgium, and Iceland [1-5], has been deeply involved in overcoming this challenge, by more deeply studying the X-ray physics underlying Computed Tomography: we developed increasingly mature methods to retrieve, from the grey value-defined voxel characteristics given in CT images, the actually underlying physical property, called X-ray attenuation coefficient. The latter contains information on the chemical composition of the material making up the considered voxel, and combining this information with known chemical characteristics of the material class making up the scanned object, gives access to important microstructural information inside the voxel, such as microporosity, or contents of known chemical substances. The latter then enter, as input values, experimentally validated micromechanical formulations representing the material inside the voxel, so as to reliably determine the voxel’s mechanical properties. Corresponding CT-to-mechanics conversion schemes will be presented in appropriate detail, with applications ranging from various ceramics [2, 3, 6] and polymer-ceramic composites [4] used in tissue engineering, to organs made up of the natural material bone [1,5].

Recording of the presentation

Location: San Servolo Complex.
Date: 18 - 20 May 2015, San Servo Island, Venice, Italy.


General Information

External Links

References

[1] Ch. Hellmich, C. Kober, B. Erdmann, “Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible”, Ann Biomed Eng, Vol. 36(1), pp. 108-122, (2008)

[2] S. Scheiner, R. Sinibaldi, B. Pichler, V. Komlev, C. Renghini, C. Vitale-Brovarone, F. Rustichelli, Ch. Hellmich, “Micromechanics of bone tissue-engineering scaffolds, based on resolution error-cleared computer tomography”, Biomat, Vol. 30, pp. 2411-2419, 2009.

[3] A. Dejaco, V. Komlev, J. Jaroszewicz, W. Swieszkowski, Ch. Hellmich, “Micro CTabsed multiscale elasticity of double-porous (pre-cracked) hydroxyapatite granules for regenerative medicine”, J Biomech Vol. 45, 1068-1075, 2012.

[4] K. Luczynski, A. Dejaco, O. Lahayne, J. Jaroszewicz, W. Swieszkowski, Ch. Hellmich, “MicroCT/Micromechanics-Based Finite Element Models and Quasi-Static Unloading Tests Deliver Consistent Values for Young’s Modulus of Rapid-Prototyped Polymer-Ceramic Tissue Engineering Scaffold“, CMES, vol.87, no.6, pp.505-528, 2012

[5] R. Blanchard, A. Dejaco, E. Bongaers, Ch. Hellmich, “Intravoxel bone micromechanics of microCT-based finite element simulations”, J Biomech, Vol. 40, pp.2710- 2721, 2013.

[6] A. Czenek, R. Blanchard, A. Dejaco, O. Sigurjonsson, G. Örlygsson, P. Gargiulo, Ch. Hellmich, “Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials - Perspectives for computer-aided biomaterial design”, J Mat Res, 2014, conditionally accepted for publication.

Back to Top

Document information

Published on 30/06/16

Licence: CC BY-NC-SA license

Document Score

0

Views 35
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?