(Created page with "==1 Title, abstract and keywords== Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations a...")
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==1 Title, abstract and keywords==
+
== Abstract ==
 +
One of the main drawbacks of all the time integration algorithms using an Eulerian formulations in Coupled Problems is the restricted time-step to be used to have acceptable results.
  
Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title.
+
For the case of fluid-structure interactions (FSI) with or without free-surfaces or for the case of fluid with moving internal interfaces (multi-fluids), it is well known that in the explicit integrations, the time-step to be used in the solution is stable only for time-step smaller than two critical values: the Courant-Friedrichs-Lewy (CFL) number and the Fourier number. The first one is concerning with the convective terms and the second one with the diffusive ones. Both numbers must be less than one to have stable algorithms. For convection dominant problems the condition CFL<1 becomes crucial and limit the use of explicit methods or outdistance its to be efficient. On the other hand, implicit integrations using Eulerian formulations are restricted in the time-step size due to the lack of convergence of the non-linear terms. Both time integrations, explicit or implicit are, in most cases, limited to CFL no much larger than one [<span id='cite-1'></span>[[#1|1]]].
  
Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes.
+
In this lecture we will present a Particle Method to solve coupled problems like FSI or multi-fluid problems that use in all the domain (solid and fluid) a Lagrangian formulation with explicit or implicit time integration without the CFL<1 restriction. This allows large time-steps, independent of the spatial discretization, having equal or better precision that an Eulerian integration [<span id='cite-2'></span>[[#2|2]]].
  
An abstract is required for every paper; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.
+
The proposal will be tested numerically for FSI and multi-fluid flows problems using the Particle Finite Element Method second generation (PFEM2). The results show than this Particle Method is largely more efficient compared as well in accuracy as in computing time with other more standard Eulerian formulations [<span id='cite-3'></span>[[#3|3]]].
  
==2 The main text==
+
== Recording of the presentation ==
 
+
{| style="font-size:120%; color: #222222; border: 1px solid darkgray; background: #f3f3f3; table-layout: fixed; width:100%;"
You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option.
+
|-  
 
+
| {{#evt:service=youtube|id=https://youtu.be/cOXuML22za0 | alignment=center}}
Most of the papers in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific journals in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English.
+
|- style="text-align: center;"  
 
+
| Location: San Servolo Complex.  
===2.1 Subsections===
+
|- style="text-align: center;"
 
+
| Date: 18 - 20 May 2015, San Servo Island, Venice, Italy.
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings.
+
 
+
===2.2 General guidelines===
+
 
+
Some general guidelines that should be followed in your manuscripts are:
+
 
+
:*  Avoid hyphenation at the end of a line.
+
 
+
:*  Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics.
+
 
+
:*  Use decimal points (not commas); use a space for thousands (10 000 and above).
+
 
+
:*  Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI.
+
 
+
===2.3 Tables, figures, lists and equations===
+
 
+
Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text (<span id='cite-_Ref382560620'></span>[[#_Ref382560620|table 1]], table 2, etc.) and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article.
+
 
+
<span id='_Ref382560620'></span>
+
{| style="margin: 1em auto 1em auto;border: 1pt solid black;border-collapse: collapse;"
+
|-
+
| style="text-align: center;"|Thickness
+
| style="text-align: center;"|3.175 mm
+
|-
+
| style="text-align: center;"|Young Modulus
+
| style="text-align: center;"|12.74 MPa
+
|-
+
| style="text-align: center;"|Poisson coefficient
+
| style="text-align: center;"|0.25
+
|-
+
| style="text-align: center;"|Density
+
| style="text-align: center;"|1107 kg/m<sup>3</sup>
+
 
|}
 
|}
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Table 1: Material properties</span></div>
 
  
Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript.
+
== General Information ==
 +
* Location: San Servolo Complex, Venice, Italy.
 +
* Date: 18 - 20 May 2015, San Servo Island, Venice, Italy.
 +
* Secretariat: [//www.cimne.com/ International Center for Numerical Methods in Engineering (CIMNE)].
  
<span id='_Ref448852946'></span>
+
== External Links ==
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
* [//congress.cimne.com/coupled2015/frontal/default.asp IV Coupled] Official Website of the Conference.
[[Image:Scipedia.gif|center|480px]]
+
* [//www.cimnemultimediachannel.com/ CIMNE Multimedia Channel]
</div>
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span style="text-align: center; font-size: 75%;">Figure 1. Scipedia logo.</span></div>
+
  
Number the figures according to their sequence in the text (<span id='cite-_Ref448852946'></span>[[#_Ref448852946|figure 1]], figure 2, etc.). Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material
+
==References==
 
+
For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both.
+
 
+
1. The first entry in this list
+
 
+
2. The second entry
+
 
+
2.1. A subentry
+
 
+
3. The last entry
+
 
+
* A bulleted list item
+
 
+
* Another one
+
 
+
You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. <span id='cite-_Ref424030152'></span>[[#_Ref424030152|(1)]].
+
 
+
{| style="width: 100%;"
+
|-
+
| style="vertical-align: top;"| <math>{\nabla }^{2}\phi =0</math>
+
| style="text-align: right;"|<span id='_Ref424030152'></span>
+
(1)
+
|}
+
 
+
===2.4 Supplementary material===
+
 
+
Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file.
+
 
+
==3 Bibliography==
+
 
+
<span id='_Ref449344604'></span>
+
Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the paper is [<span id='cite-1'></span>[[#1|1]]], the second [<span id='cite-2'></span>[[#2|2]]], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen (e.g. [<span id='cite-1'></span>[[#1|1]], <span id='cite-3'></span>[[#3|3]]] or [<span id='cite-2'></span>[[#2|2]]-<span id='cite-2'></span>[[#4|4]]]).
+
 
+
<span id='_Ref449084254'></span>
+
You should ensure that all references are cited in the text and that the reference list. References should preferably refer to papers published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [<span id='cite-1'></span>[[#1|1]]], other journal articles [<span id='cite-2'></span>[[#2|2]]], books [<span id='cite-3'></span>[[#3|3]]], book chapter [<span id='cite-4'></span>[[#4|4]]], conference proceedings [<span id='cite-5'></span>[[#5|5]]], and online documents [<span id='cite-6'></span>[[#6|6]]], shown in references section below.
+
 
+
==4 Acknowledgments==
+
 
+
Acknowledgments should be inserted at the end of the paper, before the references section.
+
 
+
==5 References==
+
 
+
<span id='_Ref449083719'></span>
+
 
<div id="1"></div>
 
<div id="1"></div>
[[#cite-1|[1]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Article code. Available: [http://www.scipedia.com/ucode. http://www.scipedia.com/ucode.]
+
[[#cite-1|[1]]] Sergio Idelsohn, Norberto Nigro, Alejandro Limache, Eugenio Oñate. “Large time-step explicit
 
+
integration method for solving problem with dominant convection”. Comput. Methods Appl.
 +
Mech. Engrg.; 217-220; pp:168–185; (2012).
 
<div id="2"></div>
 
<div id="2"></div>
[[#cite-2|[2]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Volume number, first page-last page.
+
[[#cite-2|[2]]] Sergio Idelsohn, Norberto Nigro, Juan Gimenez, Riccardo Rossi, Julio Marti. “A fast and
 
+
accurate method to solve the incompressible Navier-Stokes equations” Engineering
 +
Computations, Vol 30, Issue 2, pp 197-222, (2013).
 
<div id="3"></div>
 
<div id="3"></div>
[[#cite-3|[3]]] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
+
[[#cite-3|[3]]] Sergio Idelsohn, Julio Marti, Pablo Becker, Eugenio Oñate. “Analysis of multi-fluid flows with
 
+
large time-steps using the Particle Finite Element Method”; Int. Journal for Num. Methods in
<div id="4"></div>
+
Fluids. Vol 75, pp: 621-644, DOI: 10.1002/fld.3908, (2014).
[[#cite-4|[4]]] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
+
 
+
<div id="5"></div>
+
[[#cite-5|[5]]] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
+
 
+
<div id="6"></div>
+
[[#cite-6|[6]]] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: [http://www.scipedia.com/document.pdf http://www.scipedia.com/document.pdf]. [Accessed day, month and year].
+

Latest revision as of 15:51, 20 July 2016

Abstract

One of the main drawbacks of all the time integration algorithms using an Eulerian formulations in Coupled Problems is the restricted time-step to be used to have acceptable results.

For the case of fluid-structure interactions (FSI) with or without free-surfaces or for the case of fluid with moving internal interfaces (multi-fluids), it is well known that in the explicit integrations, the time-step to be used in the solution is stable only for time-step smaller than two critical values: the Courant-Friedrichs-Lewy (CFL) number and the Fourier number. The first one is concerning with the convective terms and the second one with the diffusive ones. Both numbers must be less than one to have stable algorithms. For convection dominant problems the condition CFL<1 becomes crucial and limit the use of explicit methods or outdistance its to be efficient. On the other hand, implicit integrations using Eulerian formulations are restricted in the time-step size due to the lack of convergence of the non-linear terms. Both time integrations, explicit or implicit are, in most cases, limited to CFL no much larger than one [1].

In this lecture we will present a Particle Method to solve coupled problems like FSI or multi-fluid problems that use in all the domain (solid and fluid) a Lagrangian formulation with explicit or implicit time integration without the CFL<1 restriction. This allows large time-steps, independent of the spatial discretization, having equal or better precision that an Eulerian integration [2].

The proposal will be tested numerically for FSI and multi-fluid flows problems using the Particle Finite Element Method second generation (PFEM2). The results show than this Particle Method is largely more efficient compared as well in accuracy as in computing time with other more standard Eulerian formulations [3].

Recording of the presentation

Location: San Servolo Complex.
Date: 18 - 20 May 2015, San Servo Island, Venice, Italy.

General Information

External Links

References

[1] Sergio Idelsohn, Norberto Nigro, Alejandro Limache, Eugenio Oñate. “Large time-step explicit integration method for solving problem with dominant convection”. Comput. Methods Appl. Mech. Engrg.; 217-220; pp:168–185; (2012).

[2] Sergio Idelsohn, Norberto Nigro, Juan Gimenez, Riccardo Rossi, Julio Marti. “A fast and accurate method to solve the incompressible Navier-Stokes equations” Engineering Computations, Vol 30, Issue 2, pp 197-222, (2013).

[3] Sergio Idelsohn, Julio Marti, Pablo Becker, Eugenio Oñate. “Analysis of multi-fluid flows with large time-steps using the Particle Finite Element Method”; Int. Journal for Num. Methods in Fluids. Vol 75, pp: 621-644, DOI: 10.1002/fld.3908, (2014).

Back to Top

Document information

Published on 30/06/16

Licence: CC BY-NC-SA license

Document Score

0

Views 48
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?