(Created page with "==1 Title, abstract and keywords== Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations a...")
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==1 Title, abstract and keywords==
+
==Abstract==
 +
The methods of two-scale analysis based on the method of numerical material testing (NMT) [<span id='cite-1'></span>[[#1|1]]] and plate testing (NPT) [<span id='cite-2'></span>[[#2|2]]] have indisputable superiority over FE2 -type micro-macro coupling schemes, though there are some issues to be resolved or examined. In particular, the decoupling of micro- and macroscopic analyses makes the homogenization-based two-scale analysis methods computationally law-cost and thus practical in view of industrial applications, but at the same time requires us to prepare reliable macroscopic constitutive models. To identify promising research directions for two-scale analyses, we introduce three selected topics described below to discuss the advantages and challenges of NMT and NPT.
  
Your paper should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title.
+
A major advantage in the first topic is that macroscopic inelastic constitutive models for a variety of composite materials can easily be determined with reference to the material models assumed for periodic microstructures (unit cells), if the small strain assumption is valid. However, NMTs with finite deformation of resins often cause some trouble. That is, even though isotropic multiplicative finite visco-plastic models is originally developed and introduced for NMTs, the formulation of the corresponding anisotropic model for macroscopic analyses is not always possible.
  
Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes.
+
The second topic arises from the method of NPT for composite plates, which enables us to evaluate the relationship between macroscopic resultant stresses and generalized strains. The originally formulated microscopic problem is featured by the in-plane periodic boundary conditions, which properly reproduces all the plate’s deformation modes. If we confine ourselves to linearly elastic material behavior, even the topology optimization of microscopic plate’s cross-sections is successfully conducted to maximize the performance at macro-scale. Nonetheless, we may not meet a macroscopic plate model that can accommodate the NPT results of nonlinear material behavior assumed for the in-plane unit cell.
  
An abstract is required for every paper; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.
+
The third subject of study is related to the method of isogeometric analyses (IGA) [<span id='cite-3'></span>[[#3|3]]] for NMT and NPT. Since the treatment of the combination of different materials in IGA models is not trivial especially along with periodicity constraints, the first priority is to clearly specify points at issue in the numerical modeling, or equivalently mesh generation, for IG homogenization analysis (IGHA). The most important issue is how to generate patches for NURBS representation of the geometry of a rectangular parallelepiped unit cell to realize appropriate deformations in consideration of the convex-full property of IGA and the in-plane periodicity. A promising coping technique is proposed and numerically demonstrated.  
  
==2 The main text==
+
== Recording of the presentation ==
 
+
{| style="font-size:120%; color: #222222; border: 1px solid darkgray; background: #f3f3f3; table-layout: fixed; width:100%;"
You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option.
+
|-  
 
+
| {{#evt:service=youtube|id=https://youtu.be/4j3hGK-2OpM|alignment=center}}
Most of the papers in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific journals in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English.
+
|- style="text-align: center;"  
 
+
| Location: Technical University of Catalonia (UPC), Vertex Building.  
===2.1 Subsections===
+
|- style="text-align: center;"
 
+
| Date: 1 - 3 September 2015, Barcelona, Spain.
Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings.
+
 
+
===2.2 General guidelines===
+
 
+
Some general guidelines that should be followed in your manuscripts are:
+
 
+
:*  Avoid hyphenation at the end of a line.
+
 
+
:*  Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics.
+
 
+
:*  Use decimal points (not commas); use a space for thousands (10 000 and above).
+
 
+
:*  Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI.
+
 
+
===2.3 Tables, figures, lists and equations===
+
 
+
Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text (<span id='cite-_Ref382560620'></span>[[#_Ref382560620|table 1]], table 2, etc.) and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article.
+
 
+
<span id='_Ref382560620'></span>
+
{| style="margin: 1em auto 1em auto;border: 1pt solid black;border-collapse: collapse;"
+
|-
+
| style="text-align: center;"|Thickness
+
| style="text-align: center;"|3.175 mm
+
|-
+
| style="text-align: center;"|Young Modulus
+
| style="text-align: center;"|12.74 MPa
+
|-
+
| style="text-align: center;"|Poisson coefficient
+
| style="text-align: center;"|0.25
+
|-
+
| style="text-align: center;"|Density
+
| style="text-align: center;"|1107 kg/m<sup>3</sup>
+
 
|}
 
|}
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Table 1: Material properties</span></div>
 
  
Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript.
+
== General Information ==
 +
* Location: Technical University of Catalonia (UPC), Barcelona, Spain.
 +
* Date: 1 - 3 September 2015
 +
* Secretariat: [//www.cimne.com/ International Center for Numerical Methods in Engineering (CIMNE)].
  
<span id='_Ref448852946'></span>
+
== External Links ==
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
* [//congress.cimne.com/complas2015/frontal/default.asp Complas XIII] Official Website of the Conference.
[[Image:Scipedia.gif|center|480px]]
+
* [//www.cimnemultimediachannel.com/ CIMNE Multimedia Channel]
</div>
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<span style="text-align: center; font-size: 75%;">Figure 1. Scipedia logo.</span></div>
+
  
Number the figures according to their sequence in the text (<span id='cite-_Ref448852946'></span>[[#_Ref448852946|figure 1]], figure 2, etc.). Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material
+
==References==
 
+
For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both.
+
 
+
1. The first entry in this list
+
 
+
2. The second entry
+
 
+
2.1. A subentry
+
 
+
3. The last entry
+
 
+
* A bulleted list item
+
 
+
* Another one
+
 
+
You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. <span id='cite-_Ref424030152'></span>[[#_Ref424030152|(1)]].
+
 
+
{| style="width: 100%;"
+
|-
+
| style="vertical-align: top;"| <math>{\nabla }^{2}\phi =0</math>
+
| style="text-align: right;"|<span id='_Ref424030152'></span>
+
(1)
+
|}
+
 
+
===2.4 Supplementary material===
+
 
+
Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file.
+
 
+
==3 Bibliography==
+
 
+
<span id='_Ref449344604'></span>
+
Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the paper is [<span id='cite-1'></span>[[#1|1]]], the second [<span id='cite-2'></span>[[#2|2]]], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen (e.g. [<span id='cite-1'></span>[[#1|1]], <span id='cite-3'></span>[[#3|3]]] or [<span id='cite-2'></span>[[#2|2]]-<span id='cite-2'></span>[[#4|4]]]).
+
 
+
<span id='_Ref449084254'></span>
+
You should ensure that all references are cited in the text and that the reference list. References should preferably refer to papers published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [<span id='cite-1'></span>[[#1|1]]], other journal articles [<span id='cite-2'></span>[[#2|2]]], books [<span id='cite-3'></span>[[#3|3]]], book chapter [<span id='cite-4'></span>[[#4|4]]], conference proceedings [<span id='cite-5'></span>[[#5|5]]], and online documents [<span id='cite-6'></span>[[#6|6]]], shown in references section below.
+
 
+
==4 Acknowledgments==
+
 
+
Acknowledgments should be inserted at the end of the paper, before the references section.
+
 
+
==5 References==
+
 
+
<span id='_Ref449083719'></span>
+
 
<div id="1"></div>
 
<div id="1"></div>
[[#cite-1|[1]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Article code. Available: [http://www.scipedia.com/ucode. http://www.scipedia.com/ucode.]
+
[[#cite-1|[1]]] K. Terada, J. Kato, N. Hirayama, T. Inugai and K. Yamamoto, “A method of two-scale analysis
 
+
with micro-macro decoupling scheme: application to hyperelastic composite materials”, Comput.
 +
Mech. 52, 1199-1219, (2013).
 
<div id="2"></div>
 
<div id="2"></div>
[[#cite-2|[2]]] Author, A. and Author, B. (Year) Title of the article. Title of the Journal. Volume number, first page-last page.
+
[[#cite-2|[2]]] K. Terada, N. Hirayama, K. Yamamoto, M. Muramatsu, S. Matsubara and S. Nishi, “Numerical
 
+
plate testing for linear two-scale analyses of composite plates with in-plane periodicity”, Int. J.
 +
Num. Meth. Engng, in press.
 
<div id="3"></div>
 
<div id="3"></div>
[[#cite-3|[3]]] Author, C. (Year). Title of work: Subtitle (edition.). Volume(s). Place of publication: Publisher.
+
[[#cite-3|[3]]] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, “Isogeometric analysis: CAD, finite elements,
 
+
NURBS, exact geometry and mesh refinement”, Comput. Meth. Appl. Mech. Engng. 194.
<div id="4"></div>
+
[[#cite-4|[4]]] Author of Part, D. (Year). Title of chapter or part. In A. Editor & B. Editor (Eds.), Title: Subtitle of book (edition, inclusive page numbers). Place of publication: Publisher.
+
 
+
<div id="5"></div>
+
[[#cite-5|[5]]] Author, E. (Year, Month date). Title of the article. In A. Editor, B. Editor, and C. Editor. Title of published proceedings. Paper presented at title of conference, Volume number, first page-last page. Place of publication.
+
 
+
<div id="6"></div>
+
[[#cite-6|[6]]] Institution or author. Title of the document. Year. [Online] (Date consulted: day, month and year). Available: [http://www.scipedia.com/document.pdf http://www.scipedia.com/document.pdf]. [Accessed day, month and year].
+

Latest revision as of 14:39, 19 July 2016

Abstract

The methods of two-scale analysis based on the method of numerical material testing (NMT) [1] and plate testing (NPT) [2] have indisputable superiority over FE2 -type micro-macro coupling schemes, though there are some issues to be resolved or examined. In particular, the decoupling of micro- and macroscopic analyses makes the homogenization-based two-scale analysis methods computationally law-cost and thus practical in view of industrial applications, but at the same time requires us to prepare reliable macroscopic constitutive models. To identify promising research directions for two-scale analyses, we introduce three selected topics described below to discuss the advantages and challenges of NMT and NPT.

A major advantage in the first topic is that macroscopic inelastic constitutive models for a variety of composite materials can easily be determined with reference to the material models assumed for periodic microstructures (unit cells), if the small strain assumption is valid. However, NMTs with finite deformation of resins often cause some trouble. That is, even though isotropic multiplicative finite visco-plastic models is originally developed and introduced for NMTs, the formulation of the corresponding anisotropic model for macroscopic analyses is not always possible.

The second topic arises from the method of NPT for composite plates, which enables us to evaluate the relationship between macroscopic resultant stresses and generalized strains. The originally formulated microscopic problem is featured by the in-plane periodic boundary conditions, which properly reproduces all the plate’s deformation modes. If we confine ourselves to linearly elastic material behavior, even the topology optimization of microscopic plate’s cross-sections is successfully conducted to maximize the performance at macro-scale. Nonetheless, we may not meet a macroscopic plate model that can accommodate the NPT results of nonlinear material behavior assumed for the in-plane unit cell.

The third subject of study is related to the method of isogeometric analyses (IGA) [3] for NMT and NPT. Since the treatment of the combination of different materials in IGA models is not trivial especially along with periodicity constraints, the first priority is to clearly specify points at issue in the numerical modeling, or equivalently mesh generation, for IG homogenization analysis (IGHA). The most important issue is how to generate patches for NURBS representation of the geometry of a rectangular parallelepiped unit cell to realize appropriate deformations in consideration of the convex-full property of IGA and the in-plane periodicity. A promising coping technique is proposed and numerically demonstrated.

Recording of the presentation

Location: Technical University of Catalonia (UPC), Vertex Building.
Date: 1 - 3 September 2015, Barcelona, Spain.

General Information

External Links

References

[1] K. Terada, J. Kato, N. Hirayama, T. Inugai and K. Yamamoto, “A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials”, Comput. Mech. 52, 1199-1219, (2013).

[2] K. Terada, N. Hirayama, K. Yamamoto, M. Muramatsu, S. Matsubara and S. Nishi, “Numerical plate testing for linear two-scale analyses of composite plates with in-plane periodicity”, Int. J. Num. Meth. Engng, in press.

[3] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement”, Comput. Meth. Appl. Mech. Engng. 194.

Back to Top

Document information

Published on 10/06/16

Licence: CC BY-NC-SA license

Document Score

5

Views 48
Recommendations 1

Share this document

claim authorship

Are you one of the authors of this document?