(Created blank page) |
m (JSanchez moved page Draft Sanchez Pinedo 475819881 to Farzaneganpour et al 2024a) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | ==Abstract== | ||
+ | This paper presents and discusses results from a series of cone, vane and footing tests in a carbonate silty sand, conducted in a geotechnical centrifuge, that investigate how drainage effects scale with the diameter of the device/foundation. The tests involved different penetration and rotational velocities to quantify how velocity influences the drainage response, and in turn, the magnitude of the deduced soil strength. Cone and foundation resistance, and the shear stress measured in the vane tests, were seen to increase with increasing penetration/rotational velocity, consistent with a dilatant shearing response. The collective dataset is interpreted within the ‘drainage backbone curve’ framework, with an attempt made to understand how drainage path length varies for the different devices and is affected by stress level. | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_475819881227.pdf</pdf> |
This paper presents and discusses results from a series of cone, vane and footing tests in a carbonate silty sand, conducted in a geotechnical centrifuge, that investigate how drainage effects scale with the diameter of the device/foundation. The tests involved different penetration and rotational velocities to quantify how velocity influences the drainage response, and in turn, the magnitude of the deduced soil strength. Cone and foundation resistance, and the shear stress measured in the vane tests, were seen to increase with increasing penetration/rotational velocity, consistent with a dilatant shearing response. The collective dataset is interpreted within the ‘drainage backbone curve’ framework, with an attempt made to understand how drainage path length varies for the different devices and is affected by stress level.
Published on 06/06/24
Submitted on 06/06/24
Volume Characterization of non-textbook materials, 2024
DOI: 10.23967/isc.2024.227
Licence: CC BY-NC-SA license
Are you one of the authors of this document?