(Created page with " <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"> <big>Robust adaptive fault tolerant control for nonlinear systems with actuator failure and...")
 
(Reference)
 
(50 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
+
<!--<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
+
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
 
<big>Robust adaptive fault tolerant control for nonlinear systems with actuator failure and mismatched disturbance</big></div>
 
<big>Robust adaptive fault tolerant control for nonlinear systems with actuator failure and mismatched disturbance</big></div>
  
Line 8: Line 6:
  
 
<sup>a</sup> Sichuan Sanlian New Material Co., Ltd, 610100, Chengdu, China. Email: <span style="text-align: center; font-size: 75%;">[mailto:Xues11@126.com Xues11@126.com]; [mailto:Jian_jiang1975@163.com Jian_jiang1975@163.com] </span>
 
<sup>a</sup> Sichuan Sanlian New Material Co., Ltd, 610100, Chengdu, China. Email: <span style="text-align: center; font-size: 75%;">[mailto:Xues11@126.com Xues11@126.com]; [mailto:Jian_jiang1975@163.com Jian_jiang1975@163.com] </span>
 +
-->
 +
==Abstract==
  
'''Abstract—In this paper, a class of nonlinear system with mismatched disturbance and actuator failure is investigated. A disturbance observer is proposed to estimate the disturbance first and the error of the estimation converges to zero exponentially. By introducing an integral sliding mode surface, the disturbance observer based integral sliding mode fault tolerant control scheme is proposed to attenuate the disturbance and to guarantee the stability of the system. Specially, the control law is designed for decoupling the partial disturbance and attenuating the disturbance that cannot be decoupled. Finally, two examples are given to illustrate the effectiveness of the proposed method.'''
+
In this paper, a class of nonlinear systems with mismatched disturbance and actuator failure is investigated. A disturbance observer is proposed to estimate the disturbance first and the error of the estimation converges to zero exponentially. By introducing an integral sliding mode surface, the disturbance observer-based integral sliding mode fault tolerant control scheme is proposed to attenuate the disturbance and guarantee the stability of the system. In particular, the control law is designed for decoupling the partial disturbance and attenuating the disturbance that cannot be decoupled. Finally, two examples are given to illustrate the effectiveness of the proposed method.'''
  
<span id='PointTmp'></span><span style="text-align: center; font-size: 75%;">'''Index Terms—Actuator fault, Fault tolerant control (FTC), Disturbance observer, Adaptive Integral Sliding mode control, Nonlinear system. '''</span>
+
'''Keywords''': Actuator fault, fault tolerant control (FTC), disturbance observer, adaptive integral sliding mode control, nonlinear system
  
==1. INTRODUCTION==
+
==1. Introduction==
  
Faults frequently occur in the engineering system because of the increasing complexity and scalability for the industrial applications. Unexpected deviation of performance or system parameters can induce serious damage even break down the system in the presence of fault. With the growing demand for higher reliability, safety and maintainability, it is desired that the fault can be detected at the early stage, determine the location and magnitude of the fault, identify the severity of the fault and then accommodate the effects on the system and provide an acceptable performance. Abundant of results have been reported on the theme and much achievements have been applied on industrial systems such as aircraft systems [1], electric systems [2] and motor systems [3-4] etc. Many excellent methods was exploited such as robust control [5], sliding mode control [6-7], observer based control [8], intelligent learning control [9], and adaptive control [10-11].
+
Faults frequently occur in the engineering system because of the increasing complexity and scalability of industrial applications. Unexpected deviations of performance or system parameters can induce serious damage and even break down the system in the presence of a fault. With the growing demand for higher reliability, safety, and maintainability, it is desired that the fault can be detected at the early stage, determine the location and magnitude of the fault, identify the severity of the fault, and then accommodate the effects on the system and provide an acceptable performance. Abundant of results have been reported on the theme and many achievements have been applied to industrial systems such as aircraft systems [1], electric systems [2], and motor systems [3-4], etc. Many excellent methods were exploited such as robust control [5], sliding mode control [6-7], observer-based control [8], intelligent learning control [9], and adaptive control [10-11].
  
As aforementioned, fault is vulnerable to occur in the practical system, which certainly reduces the nominal performance, results in vibration, destroys the stability of the system and even cause catastrophic accidents. Actuator fault as the most common fault has caused wide attention. In [12], the flight tracking control system with actuator fault was investigated; an adaptive controller was designed. In [13], a class of singular systems with actuator saturation was developed; an adaptive controller was designed to compensate the fault effects through the linear matrix inequality (LMI) technique. A class of nonlinear large scale system with actuator fault was considered and an observer based fuzzy adaptive control was developed in [14]. The problem of part loss of effectiveness of actuator was addressed in [15]. In [16], a class of nonlinear system with partial loss of actuator was considered; a third order sliding model control was developed to compensate the actuator faults. These results have considered linear or nonlinear system, however, the nonlinear function either satisfy the matched condition [16], i.e., the nonlinear function is in the control channel.
+
As aforementioned, the fault is vulnerable to occur in the practical system, which certainly reduces the nominal performance, results in vibration, destroys the stability of the system, and even causes catastrophic accidents. Actuator fault as the most common fault has caused wide attention. In Ye and Yang [12], the flight tracking control system with actuator fault was investigated; an adaptive controller was designed. In Zuo et al. [13], a class of singular systems with actuator saturation was developed; an adaptive controller was designed to compensate for the fault effects through the linear matrix inequality (LMI) technique. A class of nonlinear large-scale systems with actuator fault was considered and an observer-based fuzzy adaptive control was developed in Tong et al. [14]. The problem of part loss of effectiveness of the actuator was addressed in Li and Yang [15]. In Van et al. [16], a class of nonlinear systems with partial loss of actuator was considered; a third-order sliding model control was developed to compensate for the actuator faults. These results have considered linear or nonlinear systems, however, the nonlinear function either satisfies the matched condition [16], i.e., the nonlinear function is in the control channel.
  
It is worth to point out that disturbance exist widely in many industrial processes, which affects the stability of the system seriously. The basic characteristic of disturbance is its uncertainty, nonlinearity and complexity. In some cases, the fault is considered as an additional uncertainty, disturbance or nonlinear function in the system [16], [17]. The common method is to make a compensator, i.e. constructs an anti-disturbance mechanism to compensate the disturbance. As the characteristics of the disturbance, observer design is necessary and popular in the exist literature, i.e., disturbance observer (DO). In [18], a precision positioning table system was studied and a discrete time tracking controller was designed based on the DO. In [19], the ball mill grinding circuits system was investigated and a DO was designed to estimate the strong disturbance, the controller was designed based on the observer to compensate the disturbance. In [20], a class on nonlinear system was investigated, by introducing a disturbance generator; the DO based control law was established. [21] addressed a class of Markovian jump systems with multiple disturbances; the control law was designed by integrating the DO output information and state feedback control. [22] take an insight into a generic hypersonic vehicle system with modeled and unmodeled disturbances. In these results, the disturbance matrix <math>B_d</math> and the control matrix <math>B</math> are assumed to satisfy the match condition, i.e., <math>rank\left(B\right)=rank\left(\left[\begin{array}{cc}
+
It is worth pointing out that disturbance exists widely in many industrial processes, which affects the stability of the system seriously. The basic characteristics of disturbance are its uncertainty, nonlinearity, and complexity. In some cases, the fault is considered as an additional uncertainty, disturbance, or nonlinear function in the system [16,17]. The common method is to make a compensator, i.e. construct an anti-disturbance mechanism to compensate for the disturbance. As the characteristics of the disturbance, observer design is necessary and popular in the existing literature, i.e., disturbance observer (DO). In Kempf and  Kobayashi [18], a precision positioning table system was studied and a discrete time-tracking controller was designed based on the DO. In Chen et al. [19], the ball mill grinding circuits system was investigated and a DO was designed to estimate the strong disturbance, the controller was designed based on the observer to compensate for the disturbance. In Chen [20], a class of nonlinear systems was investigated, by introducing a disturbance generator; the DO-based control law was established. Yao and Guo [21] addressed a class of Markovian jump systems with multiple disturbances; the control law was designed by integrating the DO output information and state feedback control. Wu et al. [22] take an insight into a generic hypersonic vehicle system with modeled and unmodeled disturbances. In these results, the disturbance matrix <math>B_d</math> and the control matrix <math>B</math> are assumed to satisfy the match condition, i.e., <math>rank\left(B\right)=rank\left(\left[\begin{array}{cc}
B & B_d
+
B & B_d \end{array}\right]\right)</math>, this limitation may not be applicable in some control processes.
\end{array}\right]\right)</math> , this limitation may not applicable in some control process.
+
  
It should be point out that the mismatched disturbance, that is, the disturbance enters the system in different channel, is more practical in the industrial dynamitic systems. In [23], a class of nonlinear system with actuator fault, sensor fault and mismatched disturbance was considered. In [24], the disturbance was considered as two parts, the matched disturbance was compensated by the DO while the mismatched disturbance was attenuated by variable structure control. In [25], by constructing a nonlinear disturbance observer (NDO), the sliding mode control scheme was developed to counteract the mismatched disturbance.
+
It should be pointed out that the mismatched disturbance, that is, the disturbance enters the system in different channels, is more practical in industrial dynamic systems. In Zhang et al. [23], a class of nonlinear systems with actuator fault, sensor fault, and mismatched disturbance was considered. In Wei and Guo [24], the disturbance was considered as two parts, the matched disturbance was compensated by the DO while the mismatched disturbance was attenuated by variable structure control. In Yang et al. [25], by constructing a nonlinear disturbance observer (NDO), the sliding mode control scheme was developed to counteract the mismatched disturbance.
  
Based on the aforementioned analysis, this paper is attempted to solve the FTC problem for a class of nonlinear system with actuator fault and mismatched disturbance. The main works can be summarized as follows. First of all, a improvement nonlinear disturbance observer is designed to estimate the mismatched disturbance. Then, the integral sliding mode controller is presented based on the observer, where the reachability of sliding motion is proved. Furthermore, the mismatched disturbance is divided into two parts, in which the matched part is compensated by the disturbance information while the remaining part is attenuated by the adaptive controller. Finally, the adaptive control law is proposed, which can adaptively adjust controller parameters to compensate the fault and disturbance. The effectiveness of the method is verified though two examples.
+
Based on the aforementioned analysis, this paper attempts to solve the FTC problem for a class of nonlinear systems with actuator fault and mismatched disturbance. The main works can be summarized as follows. First of all, an improved nonlinear disturbance observer is designed to estimate the mismatched disturbance. Then, the integral sliding mode controller is presented based on the observer, where the reachability of sliding motion is proved. Furthermore, the mismatched disturbance is divided into two parts, in which the matched part is compensated by the disturbance information while the remaining part is attenuated by the adaptive controller. Finally, the adaptive control law is proposed, which can adaptively adjust controller parameters to compensate for the fault and disturbance. The effectiveness of the method is verified through two examples.
  
The remaining part of this paper is organized as follows. In the section , system description and some assumptions are presented. In section , the construction of observer and the design of the controller are presented. In section , two simulation examples are used to illustrate the effectiveness of the method and some conclusions are obtained in the section .
+
The remaining part of this paper is organized as follows. In section 2, the system description and some assumptions are presented. In section 3, the construction of the observer and the design of the controller are presented. In section 4, two simulation examples are used to illustrate the effectiveness of the method, and some conclusions are obtained in section 5.
  
 
==2. Problem formulation ==
 
==2. Problem formulation ==
Line 38: Line 37:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\lbrace \begin{array}{c}
+
| <math>\left\{ \begin{array}{c}
\dot{x}\left(t\right)=Ax\left(t\right)+Bu\left(t\right)\mbox{ }+B_dd\left(t\right)\mbox{ }+\Delta f\left(x,t\right)+\xi \left(x,t\right)\\
+
\dot{x}\left(t\right)=Ax\left(t\right)+Bu\left(t\right)+B_dd\left(t\right)+\Delta f\left(x,t\right)+\xi \left(x,t\right)\\
y=Cx\left(t\right)\mbox{ }
+
y=Cx\left(t\right)\end{array}\right.</math>
\end{array}</math>
+
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
 
|}
 
|}
  
 +
where <math>x\left(t\right)\in R^n</math> is the state vector,  <math>y\left(t\right)\in R^q</math> is the output of the system,  <math>u\left(t\right)\in R^p</math> is the control input,  <math>\Delta f\left(x,t\right)</math> is a nonlinear function, which can be regarded as the un-modeled uncertainty,  <math>d\left(t\right)\in R^v</math> is the unmatched external disturbance,  <math>\xi \left(x,t\right)</math> is the mismatched nonlinearity,  <math>A</math>, <math>B</math>, <math>B_d</math>, and <math>C</math> are known constant coefficient matrices with appropriate dimensions.
  
where <math>x\left(t\right)\in R^n</math> is the state vector,  <math>y\left(t\right)\in R^q</math> is the output of the system,  <math>u\left(t\right)\in R^p</math> is the control input.  <math>\Delta f\left(x,t\right)</math> is a nonlinear function, which can be regarded as the un-modeled uncertainty.  <math>d\left(t\right)\in R^v</math> is the unmatched external disturbance.  <math>\xi \left(x,t\right)</math> is the mismatched nonlinearity.  <math>A</math> , <math>B</math> , <math>B_d</math> , <math>C</math> are known constant coefficient matrices with appropriate dimensions.
+
In this paper, the actuator failure problem is concerned. The actuators can be divided into two parts  <math>u_H</math> and <math>u_F</math>, where  <math>u_H</math> stands for the health actuator and  <math>u_F</math> represent the actuator in a fault condition. Then system (1) becomes (2)
 
+
In this paper, the actuator failure problem is concerned. The actuators can be divided into two parts  <math>u_H</math> and <math>u_F</math> , where  <math>u_H</math> stand for the health actuator and  <math>u_F</math> represent that the actuator in fault condition. Then system (1) becomes (2)
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 56: Line 53:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\lbrace \begin{array}{c}
+
| <math>\left\{ \begin{array}{c}
\dot{x}\left(t\right)=Ax\left(t\right)+B_Hu_H\left(t\right)\mbox{ }+B_Fu_F\left(t\right)\mbox{ }+B_dd\left(t\right)\mbox{ }+\Delta f\left(x,t\right)+\xi \left(x,t\right)\\
+
\dot{x}\left(t\right)=Ax\left(t\right)+B_Hu_H\left(t\right)\mbox{ }+B_Fu_F\left(t\right)+B_dd\left(t\right)+\Delta f\left(x,t\right)+\xi \left(x,t\right)\\
y=Cx\left(t\right)\mbox{ }
+
y=Cx\left(t\right)\end{array}\right.</math>
\end{array}</math>
+
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
 
|}
 
|}
  
 +
where  <math display="inline">B_H</math> and  <math display="inline">B_F</math> denote the healthy and fault matrices.
  
One can see that proposer designing of  <math>u_H</math> can guarantee the stability of the system although the existence of the external disturbance.
+
One can see that proposer designing of  <math>u_H</math> can guarantee the stability of the system despite the existence of external disturbance.
  
''Assumption 1''[17] The actuators in fault condition work abnormally, and the remain actuators work normally.
+
''Assumption 1'' [17]. The actuators in fault condition work abnormally, and the remaining actuators work normally.
  
<span id='OLE_LINK19'></span>With the assumption 1, one can use  <math>{\overline{u}}_F</math> and <math>u_F</math> represent the actual control and designed control respectively for the actuators in fault condition. Then system (2) becomes (3)
+
With assumption 1, one can use  <math>{\overline{u}}_F</math> and <math>u_F</math> represent the actual control and designed control respectively for the actuators in fault condition. Then system (2) becomes (3)
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 76: Line 73:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\lbrace \begin{array}{c}
+
| <math>\left\{ \begin{array}{c}
\dot{x}\left(t\right)=Ax\left(t\right)+Bu\left(t\right)\mbox{ }+B_F\Delta u_F\left(t\right)\mbox{ }+B_dd\left(t\right)\mbox{ }+\Delta f\left(x,t\right)+\xi \left(x,t\right)\\
+
\dot{x}\left(t\right)=Ax\left(t\right)+Bu\left(t\right)+B_F\Delta u_F\left(t\right)+B_dd\left(t\right)+\Delta f\left(x,t\right)+\xi \left(x,t\right)\\
y=Cx\left(t\right)\mbox{ }
+
y=Cx\left(t\right)\end{array}\right.</math>
\end{array}</math>
+
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
Line 85: Line 81:
  
  
where <math>\Delta u_F={\overline{u}}_F-u_F</math> .
+
where <math>\Delta u_F={\overline{u}}_F-u_F</math>.
  
''Assumption2'' [15] There exists a known function <math>\overline{f}\left(x\right)</math> and two unknown constants  <math>{\theta }_0</math> and <math>{\upsilon }_0</math> , such that the following inequality holds,
+
''Assumption 2'' [15]. There exists a known function <math>\overline{f}\left(x\right)</math> and two unknown constants  <math>{\theta }_0</math> and <math>{\upsilon }_0</math> , such that the following inequality holds,
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 94: Line 90:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\Delta f\left(x,t\right)\leq {\theta }_0\overline{f}\left(x\right)+</math><math>{\upsilon }_0</math> .
+
| <math>\Delta f\left(x,t\right)\leq {\theta }_0\overline{f}\left(x\right)+{\upsilon }_0</math>.
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
Line 100: Line 96:
  
  
<span id='OLE_LINK3'></span>''Assumption3'' The disturbance and the derivative of the disturbance are bounded, i.e., <math>\Vert d\left(t\right)\Vert \leq {\epsilon }_1</math> ,  <math>\Vert \dot{d}\left(t\right)\Vert \leq {\epsilon }_d</math> , where <math>{\epsilon }_1</math> and <math>{\epsilon }_d</math> are two positive constants.
+
''Assumption 3''. The disturbance and the derivative of the disturbance are bounded, i.e., <math>\Vert d\left(t\right)\Vert \leq {\epsilon }_1</math>,  <math>\Vert \dot{d}\left(t\right)\Vert \leq {\epsilon }_d</math>, where <math>{\epsilon }_1</math> and <math>{\epsilon }_d</math> are two positive constants.
  
''Assumption4'' The nonlinearity function  <math>\xi \left(x,t\right)</math> is bounded and satisfies the following condition
+
''Assumption 4''. The nonlinearity function  <math>\xi \left(x,t\right)</math> is bounded and satisfies the following condition
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 114: Line 110:
 
|}
 
|}
  
 +
where <math>R</math> and  <math>Q</math> are two positive symmetry matrices,  <math>\tilde{\xi }\left(x,t\right)=\xi \left(x_1,t\right)-</math><math>\xi \left(x_2,t\right)</math>, <math>\tilde{x}\left(x,t\right)=x_1\left(x,t\right)-x_2\left(x,t\right)</math>.
  
where <math>R</math> and <math>Q</math> are two positive symmetry matrices,  <math>\tilde{\xi }\left(x,t\right)=\xi \left(x_1,t\right)-</math><math>\xi \left(x_2,t\right)</math> , <math>\tilde{x}\left(x,t\right)=x_1\left(x,t\right)-x_2\left(x,t\right)</math> .
+
''Remark 1''. The assumption 1 is general for the actuator failure condition [16,17], in which the actuator fault can be treated as an additional uncertainty or disturbance. Compared with the results in [26], the assumption 2 in this study has been much more relaxed. Assumption 3 is common in FTC control results [15]. Assumption 4 is more general compared with the traditional Lipschitz condition [16], it should be noted that if <math>R\mbox{=}I</math>, and <math>Q=l_f{}^2I</math>, then assumption 4 degenerates to the normal Lipschitz condition, where  <math>l_f</math> is the Lipschitz constant.
  
''Remark1'' The assumption 1 is common for the actuator failure condition [16], [17], the actuator fault can be treated as an additional uncertainty or disturbance. Compared with the results in [26], the assumption 2 has been much more relaxed. Assumption 3 is common in FTC control results[15]. Assumption 4 is more general compared with the traditional Lipschitz condition [16], note that if <math>R\mbox{=}I</math> , and <math>Q=l_f{}^2I</math> , then assumption 4 degenerates to the normal Lipschitz condition, where  <math>l_f</math> is the Lipschitz constant.
+
With assumptions 1 and 2, the object of the paper is to design a control law to compensate for the effects of the disturbance and fault so that the stability and convergence of the system can be guaranteed in normal and fault conditions.
  
With the assumption 1 and 2, the object of the paper is to design a control law to compensate the effects of the disturbance and fault so that the stability and convergence of the system can be guaranteed in normal and fault condition.
+
==3. Main results==
  
==3. Main results==
+
In this part, an observer will be applied to estimate the external disturbance, and an observer-based integral sliding mode fault colorant control scheme will be designed.
  
In this part, an observer will be applied to estimate the external disturbance, and an observer based integral sliding mode fault colorant control scheme will be designed
+
===3.1 Observer design===
 
+
<span id='OLE_LINK26'></span>''3.1 Observer design''
+
  
 
For the feasibility of the observer, the following assumption is necessary.
 
For the feasibility of the observer, the following assumption is necessary.
  
''Assumption5'' [16] The additional fault term  <math>\varphi \left(t\right)=B_F\Delta u_F\left(t\right)</math> is satisfied the following condition,  <math>\Vert B_F\Delta u_F\left(t\right)\Vert \leq {\overline{\omega }}_b</math> , where <math>{\overline{\omega }}_b</math> is a positive scalar.
+
''Assumption 5'' [16]. The additional fault term  <math>\varphi \left(t\right)=B_F\Delta u_F\left(t\right)</math> satisfies the following condition,  <math>\Vert B_F\Delta u_F\left(t\right)\Vert \leq {\overline{\omega }}_b</math>, where <math>{\overline{\omega }}_b</math> is a positive scalar.
  
 
For system (3), the following observer is proposed in the form of
 
For system (3), the following observer is proposed in the form of
Line 138: Line 133:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\lbrace \begin{array}{c}
+
| <math>\left\{\begin{array}{l}
\dot{p}\left(t\right)=-g\left(x\right)B_dp\left(t\right)-g\left(x\right)[B_dp\left(t\right)+Ax\left(t\right)\\
+
\quad \dot{p}\left(t\right)= -g\left(x\right)B_dp\left(t\right)-g\left(x\right)[B_dp\left(t\right)+Ax\left(t\right)\\
+Bu\left(t\right)\mbox{ }+{\overline{\omega }}_b+B_dd\left(t\right)\mbox{ }+\Delta f\left(x,t\right)+\xi \left(x,t\right)]+T_n{\delta }_n\left(t\right)\\
+
\qquad \qquad  +Bu\left(t\right)\mbox{ }+{\overline{\omega }}_b+B_dd\left(t\right)\mbox{ }+\Delta f\left(x,t\right)+\xi \left(x,t\right)]+T_n{\delta }_n\left(t\right)\\
\overset{\mbox{ˆ}}{d}\left(t\right)=p\left(t\right)+q\left(x\right)
+
\quad \overset{\mbox{ˆ}}{d}\left(t\right)= p\left(t\right)+q\left(x\right)
\end{array}</math>
+
\end{array}\right.</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
 
|}
 
|}
  
 
+
where <math>p\left(t\right)</math> is the internal state of the observer,  <math>\overset{\mbox{ˆ}}{d}\left(t\right)</math> is the estimation of the disturbance <math>d\left(t\right)</math>, <math>q\left(x\right)</math> is a nonlinear function to be designed, <math>T_n</math> is a parameter matrix with proper dimensions, and <math>g\left(x\right)</math> is the observer gain and satisfies the following condition
where <math>p\left(t\right)</math> is the internal state of the observer,  <math>\overset{\mbox{ˆ}}{d}\left(t\right)</math> is the estimates of the disturbance <math>d\left(t\right)</math> . <math>q\left(x\right)</math> is a nonlinear function to be designed. <math>T_n</math> is a parameter matrix with proper dimensions. <math>g\left(x\right)</math> is the observer gain and satisfy the following condition
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 160: Line 154:
 
|}
 
|}
  
 
+
<math>{\delta }_n</math> is the error compensator and is defined by
<math>{\delta }_n</math> is the error compensator and defined by
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 173: Line 166:
 
|}
 
|}
  
 +
where <math>{\delta }_d={\overline{\omega }}_b-\Vert B_F\Delta u_F\left(t\right)\Vert </math>.
  
where <math>{\delta }_d={\overline{\omega }}_b-\Vert B_F\Delta u_F\left(t\right)\Vert </math> .
+
''Lemma 1''. With the assumption 4 and the observer (6), the error of the observer converges to zero exponentially.
  
''Lemma1'' With the assumption 4 and the observer (6), the error of the observer converges to zero exponentially.
+
''Proof''. Define <math>e_d\left(t\right)=d\left(t\right)-\overset{\mbox{ˆ}}{d}\left(t\right)</math>. From the observer (6), it is easy to obtain that
 
+
<span id='OLE_LINK5'></span>''Proof'' Define <math>e_d\left(t\right)=d\left(t\right)-\overset{\mbox{ˆ}}{d}\left(t\right)</math> . From the observer (6), it is easy to obtain that
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 185: Line 177:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\begin{array}{c}
+
|<math>\begin{array}{c}
 
\dot{\overset{\mbox{ˆ}}{d}}\left(t\right)=-g\left(x\right)B_dp\left(t\right)-g\left(x\right)[B_dp\left(t\right)+Ax\left(t\right)+Bu\left(t\right)+{\overline{\omega }}_b\\
 
\dot{\overset{\mbox{ˆ}}{d}}\left(t\right)=-g\left(x\right)B_dp\left(t\right)-g\left(x\right)[B_dp\left(t\right)+Ax\left(t\right)+Bu\left(t\right)+{\overline{\omega }}_b\\
+B_dd\left(t\right)\mbox{ }+\Delta f\left(x,t\right)+\xi \left(x,t\right)]+\frac{\partial q\left(x\right)}{\partial x}\dot{x}\left(t\right)\\
+
+B_dd\left(t\right)+\Delta f\left(x,t\right)+\xi \left(x,t\right)]+\frac{\partial q\left(x\right)}{\partial x}\dot{x}\left(t\right)\\
=g\left(x\right)B_de_d\left(t\right)+g\left(x\right)\left(B_F\Delta u_F\left(t\right)-{\overline{\omega }}_b\right)+T_n{\delta }_n\left(t\right)
+
\quad =g\left(x\right)B_de_d\left(t\right)+g\left(x\right)\left(B_F\Delta u_F\left(t\right)-{\overline{\omega }}_b\right)+T_n{\delta }_n\left(t\right)
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
 
|}
 
|}
 
  
 
It can be derivate that
 
It can be derivate that
Line 202: Line 193:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>{\dot{e}}_d\left(t\right)=-g\left(x\right)B_de_d\left(t\right)+</math><math>g\left(x\right)\left(B_F\Delta u_F\left(t\right)-{\overline{\omega }}_b\right)+</math><math>\dot{d}\left(t\right)-T_n{\delta }_n\left(t\right)</math>
+
|<math>{\dot{e}}_d\left(t\right)=-g\left(x\right)B_de_d\left(t\right)+</math><math>g\left(x\right)\left(B_F\Delta u_F\left(t\right)-{\overline{\omega }}_b\right)+</math><math>\dot{d}\left(t\right)-T_n{\delta }_n\left(t\right)</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
Line 215: Line 206:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>e_d\mbox{=}e^{-g\left(x\right)B_dt}e_d\left(0\right)+</math><math>{\int }_0^te^{-g\left(x\right)B_d\left(t-s\right)}\dot{d}\left(s\right)ds-</math><math>{\int }_0^te^{-g\left(x\right)B_d\left(t-s\right)}g\left(x\right)\left(B_F\Delta u_F\left(s\right)-\right. </math><math>\left. {\overline{\omega }}_b-T_n{\delta }_n\left(t\right)\right)ds</math>
+
|<math>e_d\mbox{=}e^{-g\left(x\right)B_dt}e_d\left(0\right)+</math><math>{\int }_0^te^{-g\left(x\right)B_d\left(t-s\right)}\dot{d}\left(s\right)ds-</math><math>{\int }_0^te^{-g\left(x\right)B_d\left(t-s\right)}g\left(x\right)\left(B_F\Delta u_F\left(s\right)-\right. </math><math>\left. {\overline{\omega }}_b-T_n{\delta }_n\left(t\right)\right)ds</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
Line 221: Line 212:
  
  
From (10), one can deduced that
+
From Eq.(10), one can deduce that
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 246: Line 237:
 
|-
 
|-
 
| <math>\begin{array}{c}
 
| <math>\begin{array}{c}
e_d\leq \Vert e^{-g\left(x\right)B_dt}e_d\left(0\right)\Vert +{\int }_0^t\Vert e^{-g\left(x\right)B_d\left(t-s\right)}{\epsilon }_d\Vert \mbox{ }ds=ce^{-\rho t}h_0+c{\int }_0^t{\epsilon }_de^{-\rho \left(t-s\right)}ds\\
+
e_d\leq \Vert e^{-g\left(x\right)B_dt}e_d\left(0\right)\Vert +{\int }_0^t\Vert e^{-g\left(x\right)B_d\left(t-s\right)}{\epsilon }_d\Vert \mbox{ }ds\\
 +
=ce^{-\rho t}h_0+c{\int }_0^t{\epsilon }_de^{-\rho \left(t-s\right)}ds\\
 
=ce^{-\rho t}h_0+\frac{c{\epsilon }_d}{\rho }\left(1-e^{-\rho t}\right)
 
=ce^{-\rho t}h_0+\frac{c{\epsilon }_d}{\rho }\left(1-e^{-\rho t}\right)
 
\end{array}</math>
 
\end{array}</math>
Line 252: Line 244:
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
 
|}
 
|}
 
  
 
where <math>h_0</math> is a constant bound satisfy <math>\Vert e_d\left(0\right)\Vert \leq h_0</math> . Define  <math>\overline{\kappa }=ce^{-\rho t}h_0+\frac{c{\epsilon }_d}{\rho }\left(1-\right. </math><math>\left. e^{-\rho t}\right)</math> , then (13) can be written as  <math>e_d\leq \overline{\kappa }</math> . This completes the proof.
 
where <math>h_0</math> is a constant bound satisfy <math>\Vert e_d\left(0\right)\Vert \leq h_0</math> . Define  <math>\overline{\kappa }=ce^{-\rho t}h_0+\frac{c{\epsilon }_d}{\rho }\left(1-\right. </math><math>\left. e^{-\rho t}\right)</math> , then (13) can be written as  <math>e_d\leq \overline{\kappa }</math> . This completes the proof.
  
''3.2 Adaptive FTC design ''
+
===3.2 Adaptive FTC design===
  
In this section, the observer based integral sliding mode fault tolerant control will be designed.  <math>\overline{\kappa }</math> and <math>{\upsilon }_0</math> are supposed to be unknown, the adaptive controller is designed as follows.
+
In this section, the observer-based integral sliding mode fault tolerant control will be designed.  <math>\overline{\kappa }</math> and <math>{\upsilon }_0</math> are supposed to be unknown, the adaptive controller is designed as follows:
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 269: Line 260:
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
 
|}
 
|}
 
  
 
where
 
where
Line 293: Line 283:
 
|}
 
|}
  
 
+
where <math>K_1\left(t\right)</math>, <math>K_2\left(t\right)</math>, <math>K_3\left(t\right)</math>  <math>K_{d1}\left(t\right)</math> and  <math>K_{d2}\left(t\right)</math> are the parameter functions to be designed
where <math>K_1\left(t\right)</math> , <math>K_2\left(t\right)</math> , <math>K_3\left(t\right)</math>  <math>K_{d1}\left(t\right)</math> and  <math>K_{d2}\left(t\right)</math> are the parameter function to be designed
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 326: Line 315:
 
|}
 
|}
  
 
+
where <math>{\lambda }_1</math> and <math>{\lambda }_2</math> are two positive scalars,  <math>{\upsilon }_1\geq {\upsilon }_0</math> , <math>{\gamma }_1^{{_\ast}}\geq {\gamma }_1</math> and <math>{\gamma }_1</math> is defined in Eq.(23),  <math>{\delta }_m</math> is the bound of the nonlinear function  <math>\xi \left(x,t\right)</math>, <math>\overset{\mbox{ˆ}}{\overline{\kappa }}</math>, <math>{\overset{\mbox{ˆ}}{\upsilon }}_0</math> and <math>{\overset{\mbox{ˆ}}{\delta }}_m</math> are the estimate of  <math>\overline{\kappa }</math>, <math>{\upsilon }_0</math> and <math>{\delta }_m</math> , and the adaptive control laws are designed in the form of
where <math>{\lambda }_1</math> and <math>{\lambda }_2</math> are two positive scalar,  <math>{\upsilon }_1\geq {\upsilon }_0</math> , <math>{\gamma }_1^{{_\ast}}\geq {\gamma }_1</math> and <math>{\gamma }_1</math> is defined in (23),  <math>{\delta }_m</math> is the bound of the nonlinear function  <math>\xi \left(x,t\right)</math> . <math>\overset{\mbox{ˆ}}{\overline{\kappa }}</math> , <math>{\overset{\mbox{ˆ}}{\upsilon }}_0</math> and <math>{\overset{\mbox{ˆ}}{\delta }}_m</math> are the estimate of  <math>\overline{\kappa }</math> , <math>{\upsilon }_0</math> and <math>{\delta }_m</math> , and the adaptive control laws are designed in the form of
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 359: Line 347:
 
|}
 
|}
  
 +
where <math>{\chi }_p</math>  <math>{\chi }_q</math>, <math>{\chi }_r</math>, <math>{\beta }_p</math>, <math>{\beta }_q</math> and <math>{\beta }_r</math> are positive parameters.
  
where <math>{\chi }_p</math>  <math>{\chi }_q</math> , <math>{\chi }_r</math> , <math>{\beta }_p</math> , <math>{\beta }_q</math> and <math>{\beta }_r</math> are positive parameters.
+
The control law will be used in the integral sliding mode control,  <math>u_m</math> is used to make the system asymptotically stable,  <math>u_n</math> is used to compensate for the effects of the actuator fault, disturbance estimation error, and nonlinear factors. In this paper, the sliding mode switching function is designed as follows
 
+
The control law will be used in the integral sliding mode control,  <math>u_m</math> is used to make the system asymptotically stable,  <math>u_n</math> is used to compensate the effects of the actuator fault, disturbance estimation error and nonlinear factors. In this paper, the sliding mode switching function is designed as follows
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 373: Line 360:
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
 
|}
 
|}
 
  
 
where <math>D\in R^{p\times n}</math> is a designed matrix that  <math>DB</math> is invertible. In the next section, the reaching ability will be verified.
 
where <math>D\in R^{p\times n}</math> is a designed matrix that  <math>DB</math> is invertible. In the next section, the reaching ability will be verified.
  
'''Theorem 1''' With''' '''the controller in the (14), the state strategies of the system will drive onto the sliding surface  <math>s\left(t\right)</math> in finite time.
+
'''Theorem 1'''. With the controller in Eq.(14), the state strategies of the system will drive onto the sliding surface  <math>s\left(t\right)</math> in finite time.
  
''Proof ''Denote <math>\tilde{\overline{\kappa }}=\overline{\kappa }-\overset{\mbox{ˆ}}{\overline{\kappa }}</math> ,  <math>{\tilde{\upsilon }}_0={\upsilon }_0-{\overset{\mbox{ˆ}}{\upsilon }}_0</math> , <math>{\tilde{\delta }}_m={\delta }_m-{\overset{\mbox{ˆ}}{\delta }}_m</math> . Consider the following Lyapunov function candidate
+
''Proof''. Denote <math>\tilde{\overline{\kappa }}=\overline{\kappa }-\overset{\mbox{ˆ}}{\overline{\kappa }}</math>,  <math>{\tilde{\upsilon }}_0={\upsilon }_0-{\overset{\mbox{ˆ}}{\upsilon }}_0</math>, <math>{\tilde{\delta }}_m={\delta }_m-{\overset{\mbox{ˆ}}{\delta }}_m</math> . Consider the following Lyapunov function candidate
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 386: Line 372:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>V\left(t\right)=\frac{1}{2}s{\left(t\right)}^Ts\left(t\right)+</math><math>\frac{1}{2{\chi }_q}{\tilde{\overline{\kappa }}}^2+</math><math>\frac{1}{2{\chi }_p}{\tilde{\upsilon }}_0{}^2</math>
+
|<math>V\left(t\right)=\frac{1}{2}s{\left(t\right)}^Ts\left(t\right)+</math><math>\frac{1}{2{\chi }_q}{\tilde{\overline{\kappa }}}^2+</math><math>\frac{1}{2{\chi }_p}{\tilde{\upsilon }}_0{}^2</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
Line 400: Line 386:
 
|-
 
|-
 
| <math>\begin{array}{c}
 
| <math>\begin{array}{c}
\dot{s}\left(t\right)=D\left(Ax\left(t\right)+Bu\left(t\right)\mbox{ }+B_F\Delta u_F\left(t\right)\mbox{ }+B_dd\left(t\right)\mbox{ }\right)\\
+
\dot{s}\left(t\right) = D\left(Ax\left(t\right)+Bu\left(t\right)\mbox{ }+B_F\Delta u_F\left(t\right)\mbox{ }+B_dd\left(t\right)\mbox{ }\right)-DAx\left(t\right)\\
-DAx\left(t\right)-DBu_m\left(t\right)-DB_d\overset{\mbox{ˆ}}{d}\left(t\right)+D\left(\Delta f\left(x,t\right)+\xi \left(x,t\right)\right)\\
+
-DBu_m\left(t\right)-DB_d\overset{\mbox{ˆ}}{d}\left(t\right)+D\left(\Delta f\left(x,t\right)+\xi \left(x,t\right)\right)\\
=DBu_n\left(t\right)+DB_F\Delta u_F\left(t\right)+DB_dd\left(t\right)\\
+
=DBu_n\left(t\right)+DB_F\Delta u_F\left(t\right)+DB_dd\left(t\right)\\
-DB_d\overset{\mbox{ˆ}}{d}\left(t\right)+D\Delta f\left(x,t\right)+D\xi \left(x,t\right)
+
-DB_d\overset{\mbox{ˆ}}{d}\left(t\right)+D\Delta f\left(x,t\right)+D\xi \left(x,t\right)
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 423: Line 409:
  
  
From (23), one has
+
From Eq.(23), one has
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 440: Line 426:
  
  
The time derivative of (35) can be determined as
+
The time derivative of Eq.(35) can be determined as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 453: Line 439:
  
  
By introducing (17)-(27), (28) can be rewritten as
+
By introducing Eqs.(17)-(27), Eq.(28) can be rewritten as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 461: Line 447:
 
|-
 
|-
 
| <math>\begin{array}{c}
 
| <math>\begin{array}{c}
\dot{V}\left(t\right)\leq -\frac{s{\left(t\right)}^TDB_dB_d{}^TD^Ts\left(t\right)}{\Vert s^T\left(t\right)DB_d\Vert }\left(\overset{\mbox{ˆ}}{\overline{\kappa }}+{\lambda }_1\right)+\Vert s{\left(t\right)}^TDB_d\Vert \overline{\kappa }-\frac{s{\left(t\right)}^TDD^Ts\left(t\right)}{\Vert s^T\left(t\right)D\Vert }\left({\overset{\mbox{ˆ}}{\delta }}_m+{\overset{\mbox{ˆ}}{\upsilon }}_0+{\lambda }_2\right)+\Vert s{\left(t\right)}^TD\Vert \left({\delta }_m+{\upsilon }_0\right)\\
+
\dot{V}\left(t\right)\leq -\frac{s{\left(t\right)}^TDB_dB_d{}^TD^Ts\left(t\right)}{\Vert s^T\left(t\right)DB_d\Vert }\left(\overset{\mbox{ˆ}}{\overline{\kappa }}+{\lambda }_1\right)+\Vert s{\left(t\right)}^TDB_d\Vert \overline{\kappa }-\frac{s{\left(t\right)}^TDD^Ts\left(t\right)}{\Vert s^T\left(t\right)D\Vert }\\
-\frac{s{\left(t\right)}^TD\overline{f}\left(x\right)\overline{f}{\left(x\right)}^TD^Ts\left(t\right)}{\Vert s^T\left(t\right)D\overline{f}\left(x\right)\Vert }{\gamma }_1^{{_\ast}}+{\gamma }_1\Vert s{\left(t\right)}^TD\overline{f}\left(x\right)\Vert -\tilde{\overline{\kappa }}\left(\Vert s^T\left(t\right)DB_d\Vert +{\beta }_q\right)-{\tilde{\upsilon }}_0\left(\Vert s^T\left(t\right)D\Vert +{\beta }_p\right)\\
+
\left({\overset{\mbox{ˆ}}{\delta }}_m+{\overset{\mbox{ˆ}}{\upsilon }}_0+{\lambda }_2\right)+\Vert s{\left(t\right)}^TD\Vert \left({\delta }_m+{\upsilon }_0\right)\\
-{\tilde{\delta }}_m\left(\Vert s^T\left(t\right)D\Vert +{\beta }_r\right)\\
+
-\frac{s{\left(t\right)}^TD\overline{f}\left(x\right)\overline{f}{\left(x\right)}^TD^Ts\left(t\right)}{\Vert s^T\left(t\right)D\overline{f}\left(x\right)\Vert }{\gamma }_1^{{_\ast}}+{\gamma }_1\Vert s{\left(t\right)}^TD\overline{f}\left(x\right)\Vert -\tilde{\overline{\kappa }}\\
<-{\lambda }_1\Vert s^T\left(t\right)DB_d\Vert -{\lambda }_2\Vert s^T\left(t\right)D\Vert \\
+
\left(\Vert s^T\left(t\right)DB_d\Vert +{\beta }_q\right)-{\tilde{\upsilon }}_0\left(\Vert s^T\left(t\right)D\Vert +{\beta }_p\right)\\
<0
+
-{\tilde{\delta }}_m\left(\Vert s^T\left(t\right)D\Vert +{\beta }_r\right)
 +
<-{\lambda }_1\Vert s^T\left(t\right)DB_d\Vert -{\lambda }_2\Vert s^T\left(t\right)D\Vert <0
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 474: Line 461:
 
Thus, the reaching ability is satisfied, this completes the proof.
 
Thus, the reaching ability is satisfied, this completes the proof.
  
''Remark2'' The controller proposed in (14) is discontinuous, in order to reduce chattering in the practical implementation, the discontinuous function can be replaced, for example,  <math>u_1\left(t\right)</math> can be replaced by <math>-\frac{{\left(DB\right)}^{-1}DB_dB_d{}^TD^Ts\left(t\right)}{\Vert s^T\left(t\right)DB_d\Vert +\alpha }\left(\overset{\mbox{ˆ}}{\overline{\kappa }}+\right. </math><math>\left. {\lambda }_1\right)</math> , where <math>\alpha </math> is a small positive constant.
+
''Remark 2''. The controller proposed in (14) is discontinuous, to reduce chattering in the practical implementation, the discontinuous function can be replaced, for example,  <math>u_1\left(t\right)</math> can be replaced by <math>-\frac{{\left(DB\right)}^{-1}DB_dB_d{}^TD^Ts\left(t\right)}{\Vert s^T\left(t\right)DB_d\Vert +\alpha }\left(\overset{\mbox{ˆ}}{\overline{\kappa }}+\right. </math><math>\left. {\lambda }_1\right)</math>, where <math>\alpha </math> is a small positive constant.
  
<span id='OLE_LINK23'></span>''3.3 Stability analysis''
+
===3.3 Stability analysis===
  
In this section, the stability of the closed loop system will be analyzed. By solving the equation  <math>\dot{s}\left(t\right)=0</math> in (25), the equivalent control law can be obtained as
+
In this section, the stability of the closed-loop system will be analyzed. By solving the equation  <math>\dot{s}\left(t\right)=0</math> in Eq.(25), the equivalent control law can be obtained as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 491: Line 478:
  
  
Substituting (26) and (30) into system (3) yields
+
Substituting Eqs.(26) and (30) into the system (3) yields
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 504: Line 491:
  
  
By defining  <math>K_d{}_1={\left(DB\right)}^{-1}DB_d</math> , <math>{\overline{B}}_d=B_d-B{\left(DB\right)}^{-1}DB_d</math> , <math>\overline{M}=I-B{\left(DB\right)}^{-1}D</math> , (31) can be rewritten as
+
By defining  <math>K_d{}_1={\left(DB\right)}^{-1}DB_d</math>, <math>{\overline{B}}_d=B_d-B{\left(DB\right)}^{-1}DB_d</math>, <math>\overline{M}=I-B{\left(DB\right)}^{-1}D</math>, Eq.(31) can be rewritten as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 517: Line 504:
  
  
As before mentioned, the disturbance matched condition is not satisfied, i.e. <math>rank\left(B\right)<rank\left(B,B_d\right)</math> . From the definition of  <math>{\overline{B}}_d</math> , one can easy to check that <math>rank\left(B\right)<rank\left(B,{\overline{B}}_d\right)</math> . In this paper, the disturbance is divided into two parts, i.e., <math>{\overline{B}}_d=\left[\begin{array}{cc}
+
As before mentioned, the disturbance-matched condition is not satisfied, i.e. <math>rank\left(B\right)<rank\left(B,B_d\right)</math>. From the definition of  <math>{\overline{B}}_d</math>, we can easily check that <math>rank\left(B\right)<rank\left(B,{\overline{B}}_d\right)</math>. In this paper, the disturbance is divided into two parts, i.e.,  
 +
 
 +
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" |<math>{\overline{B}}_d=\left[\begin{array}{cc}
 
{\overline{B}}_{d_1} & {\overline{B}}_{d_2}
 
{\overline{B}}_{d_1} & {\overline{B}}_{d_2}
\end{array}\right]</math> ,  <math>d={\left[\begin{array}{cc}
+
\end{array}\right]</math>,  <math>d={\left[\begin{array}{cc}
 
d_1 & d_2
 
d_1 & d_2
\end{array}\right]}^T</math> , then  <math>{\overline{B}}_dd\left(t\right)</math> can be written as  <math>{\overline{B}}_dd\left(t\right)={\overline{B}}_{d1}d_1\left(t\right)+</math><math>{\overline{B}}_{d2}d_2\left(t\right)</math> , where <math>{\overline{B}}_{d_1}=\left[\begin{array}{cccc}
+
\end{array}\right]}^T</math>,  
 +
|}
 +
|}
 +
then  <math>{\overline{B}}_dd\left(t\right)</math> can be written as   
 +
 
 +
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" |<math>{\overline{B}}_dd\left(t\right)={\overline{B}}_{d1}d_1\left(t\right)+</math><math>{\overline{B}}_{d2}d_2\left(t\right)</math>,
 +
|}
 +
|}
 +
 
 +
where  
 +
 
 +
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" |<math>\begin{array}{l}
 +
{\overline{B}}_{d_1}=\left[\begin{array}{cccc}
 
{\overline{B}}_{d_{\kappa 1}} & {\overline{B}}_{d_{\kappa 2}} & ... & {\overline{B}}_{d_{\kappa m1}}
 
{\overline{B}}_{d_{\kappa 1}} & {\overline{B}}_{d_{\kappa 2}} & ... & {\overline{B}}_{d_{\kappa m1}}
\end{array}\right]\in R^{n\times m_1}</math> <math>{\overline{B}}_{d_2}=\left[\begin{array}{cccc}
+
\end{array}\right]\in R^{n\times m_1},  \\
 +
{\overline{B}}_{d_2}=\left[\begin{array}{cccc}
 
{\overline{B}}_{d_{\theta 1}} & {\overline{B}}_{d_{\theta 2}} & ... & {\overline{B}}_{d_{\theta m2}}
 
{\overline{B}}_{d_{\theta 1}} & {\overline{B}}_{d_{\theta 2}} & ... & {\overline{B}}_{d_{\theta m2}}
\end{array}\right]\in R^{n\times m_2}</math> , <math>d_1={\left[\begin{array}{cccc}
+
\end{array}\right]\in R^{n\times m_2},\\
 +
d_1={\left[\begin{array}{cccc}
 
d_{\kappa 1} & d_{\kappa 2} & ... & d_{\kappa m_1}
 
d_{\kappa 1} & d_{\kappa 2} & ... & d_{\kappa m_1}
\end{array}\right]}^T\in R^{m_1\times 1}</math> , <math>d_2={\left[\begin{array}{cccc}
+
\end{array}\right]}^T\in R^{m_1\times 1}, \\
 +
d_2={\left[\begin{array}{cccc}
 
d_{\theta 1} & d_{\theta 2} & ... & d_{\theta m_1}
 
d_{\theta 1} & d_{\theta 2} & ... & d_{\theta m_1}
\end{array}\right]}^T\in R^{m_2\times 1}</math> , and <math>m_1+m_2=\nu </math> .
+
\end{array}\right]}^T\in R^{m_2\times 1},\\
 +
m_1+m_2=\nu \end{array}</math>
 +
|}
 +
|}
 +
 
  
Let <math>rank\left(B\right)=rank\left(B,{\overline{B}}_{d\mbox{1}}\right)</math> , <math>rank\left(B\right)<rank\left(B,{\overline{B}}_{d2}\right)</math> and the parameter  <math>K_{d2}</math> in (15) can be chosen as <math>K_{d2}=\left[\begin{array}{cccc}
+
Let <math>rank\left(B\right)=rank\left(B,{\overline{B}}_{d\mbox{1}}\right)</math>, <math>rank\left(B\right)<rank\left(B,{\overline{B}}_{d2}\right)</math> and the parameter  <math>K_{d2}</math> in Eq.(15) can be chosen as <math>K_{d2}=\left[\begin{array}{cccc}
 
K_{s1} & K_{s1} & ... & K_{s\upsilon }
 
K_{s1} & K_{s1} & ... & K_{s\upsilon }
\end{array}\right]\in R^{p\times \upsilon }</math> , where <math>BK_{si}={\overline{B}}_{d\kappa i}</math> for  <math>i\leq m_1</math> and  <math>K_{si}=0</math> for <math>i>m_1</math> . Then the equation  <math>BK_{d2}={\overline{B}}_{d\mbox{1}}</math> is solvable. Note that  <math>\overline{M}=B\tilde{M}</math> and  <math>\tilde{M}=\left(B^{\dagger }-{\left(DB\right)}^{-1}D\right)</math> , where <math>B^{\dagger }=B^T{\left(BB^T\right)}^{-1}</math> . Then (32) can be rewritten as
+
\end{array}\right]\in R^{p\times \upsilon }</math>, where <math>BK_{si}={\overline{B}}_{d\kappa i}</math> for  <math>i\leq m_1</math> and  <math>K_{si}=0</math> for <math>i>m_1</math>. Then the equation  <math>BK_{d2}={\overline{B}}_{d\mbox{1}}</math> is solvable. Note that  <math>\overline{M}=B\tilde{M}</math> and  <math>\tilde{M}=\left(B^{\dagger }-{\left(DB\right)}^{-1}D\right)</math>, where <math>B^{\dagger }=B^T{\left(BB^T\right)}^{-1}</math>. Then (32) can be rewritten as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 546: Line 569:
  
  
''Remark3 ''One can see that if <math>{\overline{B}}_{d2}=0</math> , then  <math>rank\left(B\right)=rank\left(B,{\overline{B}}_d\right)</math> , so the matched condition is a special case, i.e., this paper considers a more general case. In addition, one can also obtain that one of the solution of  <math>K_{d2}</math> is  <math>K_{si}=B^{\dagger }{\overline{B}}_{d\kappa i}</math> and <math>B^{\dagger }</math> is the general inverse of <math>B</math> .
+
''Remark 3''. We can see that if <math>{\overline{B}}_{d2}=0</math>, then  <math>rank\left(B\right)=rank\left(B,{\overline{B}}_d\right)</math>, so the matched condition is a special case, i.e., this paper considers a more general case. In addition, we can also obtain that one of the solutions of  <math>K_{d2}</math> is  <math>K_{si}=B^{\dagger }{\overline{B}}_{d\kappa i}</math> and <math>B^{\dagger }</math> is the general inverse of <math>B</math>.
  
The object of the next part is to design <math>K_1\left(t\right)</math> , <math>K_2\left(t\right)</math> and <math>K_3\left(t\right)</math> such that the stability of the system can be guaranteed. The control laws are designed as follows
+
The object of the next part is to design <math>K_1\left(t\right)</math>, <math>K_2\left(t\right)</math> and <math>K_3\left(t\right)</math> such that the stability of the system can be guaranteed. The control laws are designed as follows
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 565: Line 588:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>K_2\left(t\right)=-\frac{K_{d2}{\overset{\mbox{ˆ}}{w}}_1{\overline{B}}_{d1}{}^TP}{\Vert x^TP{\overline{B}}_{d1}\Vert }</math>
+
|<math>K_2\left(t\right)=-\frac{K_{d2}{\overset{\mbox{ˆ}}{w}}_1{\overline{B}}_{d1}{}^TP}{\Vert x^TP{\overline{B}}_{d1}\Vert }</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
Line 575: Line 598:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>K_3\left(t\right)=-\frac{\tilde{M}{\overset{\mbox{ˆ}}{\gamma }}^2{}_1{\overline{f}}^2\left(x\right){\tilde{M}}^TB^TP}{\Vert x^TPB\tilde{M}\Vert \overline{f}\left(x\right){\overset{\mbox{ˆ}}{\gamma }}_1+\sigma \left(t\right)}</math>
+
|<math>K_3\left(t\right)=-\frac{\tilde{M}{\overset{\mbox{ˆ}}{\gamma }}^2{}_1{\overline{f}}^2\left(x\right){\tilde{M}}^TB^TP}{\Vert x^TPB\tilde{M}\Vert \overline{f}\left(x\right){\overset{\mbox{ˆ}}{\gamma }}_1+\sigma \left(t\right)}</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
 
|}
 
|}
  
 
+
where <math>{\overset{\mbox{ˆ}}{w}}_1</math>, <math>\overset{\mbox{ˆ}}{\varpi }</math> and  <math>{\overset{\mbox{ˆ}}{\gamma }}_1</math> are estimations of  <math>w_1</math>, <math>\varpi </math> and <math>{\gamma }_1</math>, respectively,  <math>w_1</math> and <math>\varpi </math> are designed in Eqs.(59) and (60), <math>P</math> is a positive symmetry matrix, and <math>\sigma \left(t\right)</math> is a continuous function, and satisfies
where <math>{\overset{\mbox{ˆ}}{w}}_1</math> , <math>\overset{\mbox{ˆ}}{\varpi }</math> and  <math>{\overset{\mbox{ˆ}}{\gamma }}_1</math> are estimations of  <math>w_1</math> , <math>\varpi </math> and <math>{\gamma }_1</math> respectively,  <math>w_1</math> and <math>\varpi </math> are designed in (59) and (60). <math>P</math> is a positive symmetry matrix. <math>\sigma \left(t\right)</math> is an continuous function, and satisfies
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 593: Line 615:
 
|}
 
|}
  
 +
where  <math>{\sigma }^{{_\ast}}</math> is a positive scalar.
  
 
The adaptive updating control laws are given by
 
The adaptive updating control laws are given by
Line 626: Line 649:
 
|}
 
|}
  
 +
where <math>{\beta }_1</math>, <math>{\beta }_2</math> and <math>{\beta }_3</math> are three positive constants.
  
where <math>{\beta }_1</math> , <math>{\beta }_2</math> and <math>{\beta }_3</math> are three positive constants.
+
Denote  <math>\tilde{\varpi }=\varpi -\overset{\mbox{ˆ}}{\varpi }</math>, <math>{\tilde{w}}_1=w_1-{\overset{\mbox{ˆ}}{w}}_1</math>,  <math>{\tilde{\gamma }}_1={\gamma }_1-{\overset{\mbox{ˆ}}{\gamma }}_1</math>, we can obtain the following dynamics
 
+
Denote  <math>\tilde{\varpi }=\varpi -\overset{\mbox{ˆ}}{\varpi }</math> , <math>{\tilde{w}}_1=w_1-{\overset{\mbox{ˆ}}{w}}_1</math> ,  <math>{\tilde{\gamma }}_1={\gamma }_1-{\overset{\mbox{ˆ}}{\gamma }}_1</math> , one can obtain the following dynamics
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 662: Line 684:
  
  
'''Theorem 2''' '':'' With the controller (34)-(36) and the adaptive control laws (38)-(40), the closed loop system is stable if there exists two positive symmetry matrices  <math>P</math> and  <math>Q</math> , such that the following condition holds
+
'''Theorem 2'''. With the controller (34)-(36) and the adaptive control laws (38)-(40), the closed-loop system is stable if there exist two positive symmetry matrices  <math>P</math> and  <math>Q</math> , such that the following condition holds
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 677: Line 699:
 
|}
 
|}
  
 +
where  <math>P_1=PB\tilde{M}</math>, <math display="inline"> Q </math> is defined in Eq.(5).
  
where <math>P_1=PB\tilde{M}</math> .
+
''Proof''. Design the Lyapunov function candidate as
 
+
''Proof ''Design the Lyapunov function candidate as
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 693: Line 714:
  
  
Then the time derivative of (51) can be obtained as
+
Then the time derivative of Eq.(51) can be obtained as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 710: Line 731:
  
  
From (41)-(46), it can be derivative that
+
From Eqs.(41)-(46), it can be derivative that
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 782: Line 803:
  
  
By assumption 2, 4, 5 and lemma 1, one can derivative that the following inequalities hold
+
By assumptions 2, 4, 5, and lemma 1, we can derivative that the following inequalities hold
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 816: Line 837:
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
 
|}
 
|}
 
  
 
where <math>\varpi </math> and <math>w_1</math> are positive scalars.
 
where <math>\varpi </math> and <math>w_1</math> are positive scalars.
  
Substituting (47)-(55), (46) can be rewritten as
+
Substituting Eqs.(47)-(55), Eq.(46) can be rewritten as
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 827: Line 847:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>\dot{V}\left(t\right)\leq x{\left(t\right)}^T\left(PA+\right. </math><math>\left. A^TP+P_1{}^TP_1+Q\right)x\left(t\right)-2\overset{\mbox{ˆ}}{\varpi }\Vert x^TP\Vert +</math><math>\Vert 2x{\left(t\right)}^TP{\overline{B}}_{d1}\Vert w_1-</math><math>2\frac{{\overset{\mbox{ˆ}}{\gamma }}^2{}_1{\overline{f}}^2\left(x\right){\Vert x^TPB\tilde{M}\Vert }^2}{\Vert x^TPB\tilde{M}\Vert \overline{f}\left(x\right){\overset{\mbox{ˆ}}{\gamma }}_1+\sigma \left(t\right)}-</math><math>2{\tilde{\gamma }}_1\Vert x^TPB\tilde{M}\Vert +2{\gamma }_1\Vert x^TP\tilde{M}\Vert \overline{f}\left(x\right)-</math><math>2\Vert x^TP{\overline{B}}_{d1}\Vert {\overset{\mbox{ˆ}}{w}}_1+</math><math>\Vert 2x{\left(t\right)}^TP\Vert \varpi -2\tilde{\varpi }\Vert x^TP\Vert -</math><math>2{\tilde{w}}_1\Vert x^TPB_{d1}\Vert -\sigma \left(t\right)\left({\tilde{\varpi }}^2-\right. </math><math>\left. \tilde{\varpi }\varpi +{\tilde{w}}^2{}_1-{\tilde{w}}_1w_1+\right. </math><math>\left. {\tilde{\gamma }}^2{}_1-{\tilde{\gamma }}_1{\gamma }_1\right)</math>
+
| <math>\dot{V}\left(t\right)\leq x{\left(t\right)}^T\left(PA+\right. </math><math>\left. A^TP+P_1{}^TP_1+Q\right)x\left(t\right)-2\overset{\mbox{ˆ}}{\varpi }\Vert x^TP\Vert +</math><math>\Vert 2x{\left(t\right)}^TP{\overline{B}}_{d1}\Vert w_1</math>
 +
|-
 +
|<math>-2\frac{{\overset{\mbox{ˆ}}{\gamma }}^2{}_1{\overline{f}}^2\left(x\right){\Vert x^TPB\tilde{M}\Vert }^2}{\Vert x^TPB\tilde{M}\Vert \overline{f}\left(x\right){\overset{\mbox{ˆ}}{\gamma }}_1+\sigma \left(t\right)}</math><math>-2{\tilde{\gamma }}_1\Vert x^TPB\tilde{M}\Vert +2{\gamma }_1\Vert x^TP\tilde{M}\Vert \overline{f}\left(x\right)</math>
 +
|-
 +
| <math>-2\Vert x^TP{\overline{B}}_{d1}\Vert {\overset{\mbox{ˆ}}{w}}_1+\Vert 2x{\left(t\right)}^TP\Vert \varpi -2\tilde{\varpi }\Vert x^TP\Vert -2{\tilde{w}}_1\Vert x^TPB_{d1}\Vert</math>
 +
|-
 +
|-<math>\sigma \left(t\right)\left({\tilde{\varpi }}^2- \tilde{\varpi }\varpi +{\tilde{w}}^2{}_1-{\tilde{w}}_1w_1+ {\tilde{\gamma }}^2{}_1-{\tilde{\gamma }}_1{\gamma }_1\right)</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
Line 866: Line 892:
  
  
Substituting (57)-(59) into (56) yields
+
Substituting Eqs.(57)-(59) into (56) yields
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 879: Line 905:
  
  
For any positive scalar  <math>{\lambda }_m</math> and  <math>{\lambda }_n</math> , the following equality holds <math>0\leq \frac{{\lambda }_m{\lambda }_n}{{\lambda }_m+{\lambda }_n}\leq {\lambda }_n</math> . The one can obtain that
+
For any positive scalar  <math>{\lambda }_m</math> and  <math>{\lambda }_n</math> , the following equality holds <math>0\leq \frac{{\lambda }_m{\lambda }_n}{{\lambda }_m+{\lambda }_n}\leq {\lambda }_n</math>. Then we can obtain that
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 891: Line 917:
 
|}
 
|}
  
 +
where <math>{\zeta }_{\kappa }=2+\frac{1}{4}\left({\varpi }^2+ w^2{}_1+{\gamma }^2{}_1\right)</math>.
  
where <math>{\zeta }_{\kappa }=2+\frac{1}{4}\left({\varpi }^2+\right. </math><math>\left. w^2{}_1+{\gamma }^2{}_1\right)</math> .
+
According to Eq.(45), by integrating Eq.(61) yields
 
+
According to (45), by integrating (61) yields
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 902: Line 927:
 
|-
 
|-
 
| <math>\begin{array}{c}
 
| <math>\begin{array}{c}
V\left(t\right)\leq V\left(t_0\right)-{\int }_{t_0}^t{\lambda }_{min}\left(Q_1\right){\Vert x\left(s\right)\Vert }^2ds+{\int }_{t_0}^t{\zeta }_{\kappa }\sigma \left(s\right)ds\\
+
V\left(t\right)\leq V\left(t_0\right)-{\int }_{t_0}^t{\lambda }_{\min}\left(Q_1\right){\Vert x\left(s\right)\Vert }^2ds+{\int }_{t_0}^t{\zeta }_{\kappa }\sigma \left(s\right)ds\\
\leq V\left(t_0\right)-{\int }_{t_0}^t{\lambda }_{min}\left(Q_1\right){\Vert x\left(s\right)\Vert }^2ds+{\zeta }_{\kappa }{\sigma }^{{_\ast}}
+
\leq V\left(t_0\right)-{\int }_{t_0}^t{\lambda }_{\min}\left(Q_1\right){\Vert x\left(s\right)\Vert }^2ds+{\zeta }_{\kappa }{\sigma }^{{_\ast}}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 909: Line 934:
 
|}
 
|}
  
 
+
which means the system described in Eq.(33) is bounded.  <math>{\lambda }_{\min}\left(Q{}_{}^1\right)</math> denotes the minimum eigenvalue of  <math>Q_1</math>, and  <math>-Q_1=A^TP+PA+P_1{}^TP_1+Q</math>. Eq.(68) also implies
which means the system descripted in (33) is bounded.  <math>{\lambda }_{min}\left(Q{}_{}^1\right)</math> denotes the minimum eigenvalue of  <math>Q_1</math> , and  <math>-Q_1=A^TP+PA+P_1{}^TP_1+Q</math> . (68) also implies
+
  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
 
{| class="formulaSCP" style="width: 100%; text-align: center;"  
Line 917: Line 941:
 
{| style="text-align: center; margin:auto;"  
 
{| style="text-align: center; margin:auto;"  
 
|-
 
|-
| <math>{\int }_{t_0}^t{\lambda }_{min}\left(Q_1\right){\Vert x\left(s\right)\Vert }^2ds\leq V\left(t_0\right)+</math><math>{\zeta }_{\kappa }{\sigma }^{{_\ast}}</math>
+
| <math>{\int }_{t_0}^t{\lambda }_{\min}\left(Q_1\right){\Vert x\left(s\right)\Vert }^2ds\leq V\left(t_0\right)+</math><math>{\zeta }_{\kappa }{\sigma }^{{_\ast}}</math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
Line 923: Line 947:
  
  
According to Barbalat lemma, one have <math>\underset{t\rightarrow \infty}{lim}{\Vert x\left(t\right)\Vert }^2=</math><math>0</math> . This completes the proof.
+
According to Barbalat Lemma, we have <math>\underset{t\rightarrow \infty}{\lim}{\Vert x\left(t\right)\Vert }^2=</math><math>0</math>. This completes the proof.
  
''Remark 4'' Compared with the results in [15], the nonlinear function is matched, i.e.,  <math>\Delta f\left(x,t\right)</math> is in the control channel. In this paper,  <math>\Delta f\left(x,t\right)</math> exists in the different channel from the control input, i.e., in this paper, <math>\Delta f\left(x,t\right)</math> is more general.
+
''Remark 4''. Compared with the results in [15], where the nonlinear function is matched, i.e.,  <math>\Delta f\left(x,t\right)</math> is in the control channel. In this paper,  <math>\Delta f\left(x,t\right)</math> exists in the different channel from the control input, i.e., which means that <math>\Delta f\left(x,t\right)</math> is more general.
  
 
==4. Numerical examples ==
 
==4. Numerical examples ==
Line 931: Line 955:
 
In this section, two examples are simulated to illustrate the effectiveness of the proposed method.
 
In this section, two examples are simulated to illustrate the effectiveness of the proposed method.
  
<span id='OLE_LINK7'></span><span id='OLE_LINK15'></span>''Example1'' In this example, the linearized longitudinal dynamic of the VTOL aircraft which is borrowed from [23] is considered. It is assumed that the system is subjected to unmodeled dynamitic, actuator fault and external disturbance. Then, the system can be descripted as system (1), where <math>x\left(t\right)={\left[\begin{array}{cccc}
+
''Example 1''. In this example, the linearized longitudinal dynamic of the VTOL aircraft which is borrowed from [23] is considered. It is assumed that the system is subjected to unmodeled dynamics, actuator fault, and external disturbance. Then, the system can be described as system (1), where <math>x\left(t\right)={\left[\begin{array}{cccc}
 
x_1\left(t\right) & x_2\left(t\right) & x_3\left(t\right) & x_4\left(t\right)
 
x_1\left(t\right) & x_2\left(t\right) & x_3\left(t\right) & x_4\left(t\right)
\end{array}\right]}^T</math> ,  <math>x_1\left(t\right)</math> is the horizontal velocity ( <math>knot</math> ),  <math>x_2\left(t\right)</math> represents the vertical velocity ( <math>knot</math> ),  <math>x_3\left(t\right)</math> is the pitch rate ( <math>degree/s</math> ) and  <math>x_4\left(t\right)</math> express the pitch angle ( <math>degree</math> ). The parameters of the system are given as follows
+
\end{array}\right]}^T</math>,  <math>x_1\left(t\right)</math> is the horizontal velocity (<math>knot</math>),  <math>x_2\left(t\right)</math> represents the vertical velocity (<math>knot</math>),  <math>x_3\left(t\right)</math> is the pitch rate (<math>degree/s</math>), and  <math>x_4\left(t\right)</math> expresses the pitch angle (<math>degree</math>). The parameters of the system are given as follows
  
<math>A=\left[\begin{array}{cccc}
+
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" | <math>A=\left[\begin{array}{cccc}
 
-9.9477 & -0.7476 & 0.2632 & 5.0337\\
 
-9.9477 & -0.7476 & 0.2632 & 5.0337\\
 
52.1659 & 2.7452 & 5.5532 & -24.4221\\
 
52.1659 & 2.7452 & 5.5532 & -24.4221\\
Line 945: Line 974:
 
-5.5200 & 4.4900\\
 
-5.5200 & 4.4900\\
 
0 & 0
 
0 & 0
\end{array}\right]</math> , <math>C=\left[\begin{array}{cccc}
+
\end{array}\right]</math>,  
 +
|-
 +
| <math>C=\left[\begin{array}{cccc}
 
1 & 0 & 0 & 0\\
 
1 & 0 & 0 & 0\\
 
0 & 1 & 0 & 0\\
 
0 & 1 & 0 & 0\\
Line 955: Line 986:
 
-5.5200 & 0\\
 
-5.5200 & 0\\
 
0 & 0
 
0 & 0
\end{array}\right]</math> , <math>B_F=\left[\begin{array}{c}
+
\end{array}\right]</math> , <math>B_F=\left[0.1767.5924.4900\right]</math>.
\\
+
|}
\\
+
|}
\\
+
  
\end{array}0.1767.5924.4900\right]</math> .
+
The nonlinear unmodeled uncertainty and mismatched nonlinearity are assumed to be: <math>\Delta f\left(x,t\right)=\sin\left(x_4\right)</math>, <math>\xi \left(x,t\right)=\sin\left(x_1\right)</math>. The actuator fault and external are supposed to be as follows
  
The nonlinear unmodeled uncertainty and mismatched nonlinearity are assumed to be: <math>\Delta f\left(x,t\right)=sin\left(x_4\right)</math> , <math>\xi \left(x,t\right)=sin\left(x_1\right)</math> . The actuator fault and external are supposed to be as follows
+
{| class="formulaSCP" style="width: 100%; text-align: left;"
 
+
|-
<math>f\left(t\right)=\lbrace \begin{array}{c}
+
|
0\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(0\leq t<8\right)\\
+
{| style="text-align: center; margin:auto;width: 100%;"
0.5sin\left(2t+1\right)\mbox{ }\mbox{ }\left(8\leq t<10\right)\\
+
|-
0\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(10\leq t<15\right)\mbox{ }\mbox{ }
+
| style="text-align: center;" |<math>f\left(t\right)=\left\{ \begin{array}{c}
\end{array}</math> , <math>\lbrace \begin{array}{c}
+
0 \left(0\leq t<8\right)\\
d_1\left(t\right)=2sin\left(2t+1\right)\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(0\leq t<15\right)\\
+
0.5\sin\left(2t+1\right) \left(8\leq t<10\right)\\
d_2\left(t\right)=0.5sin\left(2t-3\right)\mbox{ }\left(0\leq t<15\right)
+
0\left(10\leq t<15\right)\end{array}\right.</math> , <math>\left\{ \begin{array}{c}
\end{array}</math> .
+
d_1\left(t\right)=2\sin\left(2t+1\right)\left(0\leq t<15\right)\\
 +
d_2\left(t\right)=0.5\sin\left(2t-3\right)\mbox{ }\left(0\leq t<15\right)
 +
\end{array}\right.</math>.
 +
|}
 +
|}
  
 
Note that the mismatched disturbance and the condition  <math>rank\left(B\right)\not =rank\left(B,{\overline{B}}_d\right)</math> hold, hence that the traditional method will be failed in this example. Choosing the matrix <math>D=\left[\begin{array}{cccc}
 
Note that the mismatched disturbance and the condition  <math>rank\left(B\right)\not =rank\left(B,{\overline{B}}_d\right)</math> hold, hence that the traditional method will be failed in this example. Choosing the matrix <math>D=\left[\begin{array}{cccc}
 
1 & 0 & 1 & 0\\
 
1 & 0 & 1 & 0\\
 
-1 & 1 & 0 & 1
 
-1 & 1 & 0 & 1
\end{array}\right]</math> , and one can check that  <math>DB</math> is invertible. By solving (50), one can obtain that
+
\end{array}\right]</math> , we can check that  <math>DB</math> is invertible. By solving (50), we can obtain that
  
<math>P=\left[\begin{array}{cccc}
+
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" |<math>P=\left[\begin{array}{cccc}
 
14843 & 161.7 & 226.9 & -745.0\\
 
14843 & 161.7 & 226.9 & -745.0\\
 
161.7 & 25.50 & 12.80 & -101.8\\
 
161.7 & 25.50 & 12.80 & -101.8\\
Line 984: Line 1,023:
 
745.0 & -101.8 & -47.40 & 896.5
 
745.0 & -101.8 & -47.40 & 896.5
 
\end{array}\right]</math> .
 
\end{array}\right]</math> .
 +
|}
 +
|}
  
Choose <math>\sigma \left(t\right)=2e^{-t}</math> , the results of the simulation are as follows
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
Choose <math>\sigma \left(t\right)=2e^{-t}</math>, the results of the simulation are as follows.
[[Image:Draft_Jiang_408496832-image238.png|234px]] </div>
+
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
[[#img-1|Figure 1]] shows the trajectory of the system. [[#img-2|Figure 2]] illustrates the estimation of the disturbance signals, the solid line is the original signal and the dashed line is the estimated value. From [[#img-1|Figure 1]], we can know that the states of the system have a fast response with the proposed method. In addition, the controller can ensure the stability of the system in the presence of the actuator fault and mismatched disturbance. [[#img-2|Figure 2]] characterizes that the observer has a good performance of the disturbance.
<span style="text-align: center; font-size: 75%;">Fig. 1 Response of state <math>x\left(t\right)</math> </span></div>
+
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<div id='img-1'></div>
[[Image:Draft_Jiang_408496832-image240.png|228px]] </div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image241.png|370px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 1'''. Response of state <math>x\left(t\right)</math>
 +
|}
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Fig. 2.  Estimation of disturbance <math>d\left(t\right)</math> </span></div>
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<div id='img-2'></div>
[[Image:Draft_Jiang_408496832-image242.png|228px]] </div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image243.png|364px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 2'''. Estimation of disturbance <math>d\left(t\right)</math>
 +
|}
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Fig. 3  Response of state <math>x\left(t\right)</math> without disturbance compensator</span></div>
 
  
Fig.1 shows the trajectory of the system, Fig.2 illustrates the estimation of the disturbance signals, the solid line is the original signal and the dashed line is the estimated value. From Fig.1, one can know that the states of the system have a fast response with the proposed method. In addition, the controller can ensure the stability of the system in the presence of the actuator fault and mismatched disturbance. Fig.2 characterizes that the observer have a good performance of the disturbance.
+
In order to illustrate the importance of the disturbance observer, the responses of the system are shown in [[#img-3|Figure 3]] without the disturbance observer. From the figure, we can see that the closed-loop system becomes unstable when removing the disturbance observer and compensator.
  
In order to illustrate the importance of the disturbance observer, the responses of the system are shown in Fig.3 without disturbance observer. From the figure, one can conduct that the closed loop system becomes unstable when remove the disturbance observer and compensator.
+
<div id='img-3'></div>
 +
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image245.png|340px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 3'''. Response of state <math>x\left(t\right)</math> without disturbance compensator
 +
|}
  
''Example2 ''In this section, the two-cart system which borrowed form [27] is provided to illustrate the effectiveness of the proposed method.
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
''Example 2''. In this section, the two-cart system which borrowed form is provided to illustrate the effectiveness of the proposed method [27].
  [[Image:Draft_Jiang_408496832-image243.png|354px]] </div>
+
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
As shown in [[#img-4|Figure 4]], the first cart is connected to a rigid wall via a damper, and is connected to a second cart by a spring. The external force is applied to a second cart via an actuator. Both carts have a nominal mass of  <math>a=1kg</math>, the damper has a constant of  <math>b_0=1N/m</math>, and the spring constant <math>c_0=1N/m</math>. The time constant of the actuator  <math>\tau =0.2</math>. The states are the force, velocities, and positions of the two carts. The actuator fault and mismatched disturbance are considered. The system parameters are given as follows
<span style="text-align: center; font-size: 75%;">Fig. 4  Geometric structure of the two-cart system</span></div>
+
  
As shown in Fig.4, the first cart is connected to a rigid wall via a damper, and is connected to a second cart by a spring. The external force is applied to a second cart via an actuator. Both carts have a nominal mass of  <math>a=1kg</math> , the damper have a constant of  <math>b_0=1N/m</math> and the spring constant <math>c_0=1N/m</math> . The time constant of the actuator  <math>\tau =0.2</math> . The states are the force, velocities and positions of the two carts. The actuator fault and mismatched disturbance is considered. The system parameters are given as follows
+
{| class="formulaSCP" style="width: 100%; text-align: left;"
 
+
|-
<math>A=\left[\begin{array}{ccccc}
+
|
-\frac{1}{\tau } & 0 & 0 & 0 & 0\\
+
{| style="text-align: center; margin:auto;width: 100%;"
0 & -\frac{b_0}{a} & 0 & -\frac{c_0}{a} & \frac{c_0}{a}\\
+
|-
\frac{1}{a} & 0 & 0 & \frac{c}{a} & -\frac{c_0}{a}\\
+
| style="text-align: center;" | <math>A=\left[\begin{array}{ccccc}
 +
-\displaystyle\frac{1}{\tau } & 0 & 0 & 0 & 0\\
 +
0 & -\displaystyle\frac{b_0}{a} & 0 & -\displaystyle\frac{c_0}{a} & \displaystyle\frac{c_0}{a}\\
 +
\displaystyle\frac{1}{a} & 0 & 0 & \displaystyle\frac{c}{a} & -\displaystyle\frac{c_0}{a}\\
 
0 & 1 & 0 & 0 & 0\\
 
0 & 1 & 0 & 0 & 0\\
 
0 & 0 & 1 & 0 & 0
 
0 & 0 & 1 & 0 & 0
 
\end{array}\right]</math> , <math>B=\left[\begin{array}{c}
 
\end{array}\right]</math> , <math>B=\left[\begin{array}{c}
\frac{1}{\tau }\\
+
\displaystyle\frac{1}{\tau }\\
 
0\\
 
0\\
 
0\\
 
0\\
Line 1,032: Line 1,082:
 
0
 
0
 
\end{array}\right]</math> , <math>B_F=\left[\begin{array}{c}
 
\end{array}\right]</math> , <math>B_F=\left[\begin{array}{c}
\frac{1}{\tau }\\
+
\displaystyle\frac{1}{\tau }\\
 
0\\
 
0\\
 
0\\
 
0\\
Line 1,048: Line 1,098:
 
0 & 0.1\\
 
0 & 0.1\\
 
0 & 0.2
 
0 & 0.2
\end{array}\right]</math> .
+
\end{array}\right]</math>.
 +
|}
 +
|}
  
The nonlinear unmodeled uncertainty and mismatched nonlinearity are assumed to be: <math>\Delta f\left(x,t\right)=sin\left(x_4\right)</math> , <math>\xi \left(x,t\right)=sin\left(x_1\right)</math> . The actuator fault and external are supposed to be as follows
+
<div id='img-4'></div>
 +
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image246.png|434px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 4'''. Geometric structure of the two-cart system
 +
|}
 +
 
 +
 
 +
The nonlinear unmodeled uncertainty and mismatched nonlinearity are assumed to be: <math>\Delta f\left(x,t\right)=\sin\left(x_4\right)</math>, <math>\xi \left(x,t\right)=\sin\left(x_1\right)</math>. The actuator fault and external are supposed to be as follows
 +
 
 +
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" | <math>f\left(t\right)=\left\{ \begin{array}{c}
 +
0 \left(0\leq t<\mbox{25}\right)\\
 +
\mbox{0}\mbox{.5}\sin\left(0.2t\right)\left(\mbox{25}\leq t<4\mbox{0}\right)\\
 +
\mbox{1}\left(4\mbox{0}\leq t<\mbox{80}\right)
 +
\end{array}\right.</math> , 
 +
|-
 +
|<math>d_1\left(t\right)\mbox{=}\left\{ \begin{array}{c}
 +
0\left(0\leq t<15\right)\\
 +
0.5\sin\left(t\right)\left(15\leq t<50\right)\\
 +
\mbox{1}\left(\mbox{5}0\leq t<80\right)
 +
\end{array}\right.</math> ,
 +
|-
 +
| <math>d_2\left(t\right)=\left\{ \begin{array}{c}
 +
0.5\sin\left(\mbox{3}t\right)\left(0\leq t<20\right)\\
 +
0.5\sin\left(\mbox{3}t\right)\left(20\leq t<50\right)\\
 +
1\left(50\leq t<80\right)
 +
\end{array}\right.</math>.
 +
|}
 +
|}
  
<math>f\left(t\right)=\lbrace \begin{array}{c}
 
0\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(0\leq t<\mbox{25}\right)\\
 
\mbox{0}\mbox{.5}sin\left(0.2t\right)\mbox{ }\left(\mbox{25}\leq t<4\mbox{0}\right)\\
 
\mbox{1}\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(4\mbox{0}\leq t<\mbox{80}\right)
 
\end{array}</math> ,  <math>d_1\left(t\right)\mbox{=}\lbrace \begin{array}{c}
 
0\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(0\leq t<15\right)\\
 
0.5sin\left(t\right)\mbox{ }\mbox{ }\mbox{ }\left(15\leq t<50\right)\mbox{ }\mbox{ }\mbox{ }\\
 
\mbox{1}\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(\mbox{5}0\leq t<80\right)
 
\end{array}</math> , <math>d_2\left(t\right)=\lbrace \begin{array}{c}
 
0.5sin\left(\mbox{3}t\right)\mbox{ }\mbox{ }\mbox{ }\left(0\leq t<20\right)\mbox{ }\\
 
0.5sin\left(\mbox{3}t\right)\mbox{ }\mbox{ }\mbox{ }\left(20\leq t<50\right)\\
 
1\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\left(50\leq t<80\right)\mbox{ }
 
\end{array}</math> .
 
  
 
Choosing the matrix  <math>D=\left[\begin{array}{ccccc}
 
Choosing the matrix  <math>D=\left[\begin{array}{ccccc}
 
1 & 0 & 0 & 0 & 0
 
1 & 0 & 0 & 0 & 0
\end{array}\right]</math> , and one can check that  <math>DB</math> is invertible. By solving (50), one can obtain that
+
\end{array}\right]</math>, we can check that  <math>DB</math> is invertible. By solving Eq.(50), we can obtain that
  
<math>P=\left[\begin{array}{ccccc}
+
{| class="formulaSCP" style="width: 100%; text-align: left;"
 +
|-
 +
|
 +
{| style="text-align: center; margin:auto;width: 100%;"
 +
|-
 +
| style="text-align: center;" |<math>P=\left[\begin{array}{ccccc}
 
\mbox{0}\mbox{.0799} & -0.000 & -0.000 & -0.000 & -0.000\\
 
\mbox{0}\mbox{.0799} & -0.000 & -0.000 & -0.000 & -0.000\\
 
-0.000 & 1.1046 & 0.000 & -0.000 & -0.000\\
 
-0.000 & 1.1046 & 0.000 & -0.000 & -0.000\\
Line 1,076: Line 1,154:
 
-0.000 & -0.000 & 0.000 & 1.1046 & 0.000\\
 
-0.000 & -0.000 & 0.000 & 1.1046 & 0.000\\
 
-0.000 & -0.000 & -0.000 & 0.000 & 1.1046
 
-0.000 & -0.000 & -0.000 & 0.000 & 1.1046
\end{array}\right]</math> .
+
\end{array}\right]</math>.
 +
|}
 +
|}
  
Choose <math>\sigma \left(t\right)=2e^{-t}</math> , the results of the simulation are as follows
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
Choose <math>\sigma \left(t\right)=2e^{-t}</math> , the results of the simulation are as follows.
[[Image:Draft_Jiang_408496832-image258.png|216px]] </div>
+
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
[[#img-5|Figures 5]] and [[#img-6|6]] express the trajectories of the system. From [[#img-5|Figures 5]] and [[#img-6|6]], we can see that the stability of the positions and velocities of the first and second carts can be guaranteed. [[#img-7|Figure 7]] shows the estimation of the external disturbance, we can check that the proposed method performs better than the intermediate method proposed in [27], precisely, the method proposed responds faster than the method in [27], and the proposed method has less chattering.
<span style="text-align: center; font-size: 75%;">Fig. 5  Response of state <math>x_1\left(t\right)</math> , <math>x_2\left(t\right)</math> and <math>x_3\left(t\right)</math> </span></div>
+
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<div id='img-5'></div>
[[Image:Draft_Jiang_408496832-image262.png|204px]] </div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image261.png|334px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 5'''. Response of state <math>x_1\left(t\right)</math> , <math>x_2\left(t\right)</math> and <math>x_3\left(t\right)</math>
 +
|}
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Fig. 6  Response of state <math>x_4\left(t\right)</math> and <math>x_5\left(t\right)</math> </span></div>
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<div id='img-6'></div>
[[Image:Draft_Jiang_408496832-image265.png|222px]] </div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image265.png|322px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 6'''. Response of state <math>x_4\left(t\right)</math> and <math>x_5\left(t\right)</math>
 +
|}
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Fig. 7  Estimation of disturbance <math>d\left(t\right)</math> </span></div>
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<div id='img-7'></div>
[[Image:Draft_Jiang_408496832-image266.png|204px]] </div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image268.png|340px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 7'''. Estimation of disturbance <math>d\left(t\right)</math>
 +
|}
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
 
<span style="text-align: center; font-size: 75%;">Fig. 8  Response of state <math>x_1\left(t\right)</math> , <math>x_2\left(t\right)</math> and  <math>x_3\left(t\right)</math> without controller</span></div>
 
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
In order to illustrate the effectiveness of the proposed method, the responses of the system are shown in [[#img-8|Figures 8]] and [[#img-9|9]] without the controller. From the figure, we can infer from this that the closed-loop system becomes unstable when removing the disturbance observer and compensator.
[[Image:Draft_Jiang_408496832-image267.png|216px]] </div>
+
  
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
+
<div id='img-8'></div>
<span style="text-align: center; font-size: 75%;">Fig. Response of state <math>x_\mbox{4}\left(t\right)</math> and <math>x_\mbox{5}\left(t\right)</math> without controller</span></div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image269.png|316px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 8'''. Response of state <math>x_1\left(t\right)</math> , <math>x_2\left(t\right)</math> and  <math>x_3\left(t\right)</math> without controller
 +
|}
  
Fig.5 and Fig. 6 express the trajectories of the system, from Figs.5-6, one can see that stability of the positions and velocities of the first and second cart can be guaranteed. Fig.7 shows the estimation of the external disturbance, one can clearly check that the proposed method performance better than the intermediate method proposed in [27], precisely, the method proposed response faster than the method in [27], and the proposed method has less chattering.
 
  
In order to illustrate the effectiveness of the proposed method, the responses of the system are shown in Figs.8-9 without controller. From the figure, one can conduct that the closed loop system becomes unstable when remove the disturbance observer and compensator.
+
<div id='img-9'></div>
 +
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|style="text-align: center;padding:10px;"| [[Image:Review_187843964202-image270.png|322px]]
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 9'''. Response of state <math>x_\mbox{4}\left(t\right)</math> and <math>x_\mbox{5}\left(t\right)</math> without controller
 +
|}
  
 
==5.  Conclusion==
 
==5.  Conclusion==
  
<span id='OLE_LINK12'></span><span id='OLE_LINK13'></span>In this paper, the problem of general Lipschitz nonlinear system with actuator fault and unmatched disturbance is investigated. Specifically, a disturbance observer is designed to estimate the mismatched disturbance first. Then, an observer based integral sliding mode fault tolerant control scheme is proposed. In order to guarantee the stability of the system, three adaptive control laws are constructed because of the unknown nonlinear function parameters and the unmodeled uncertainty. Finally, two examples are given to illustrate the effectiveness of the proposed method.
+
<span id='OLE_LINK12'></span><span id='OLE_LINK13'></span>In this paper, the problem of a general Lipschitz nonlinear system with actuator fault and unmatched disturbance is investigated. Specifically, a disturbance observer is designed to estimate the mismatched disturbance first. Then, an observer-based integral sliding mode fault tolerant control scheme is proposed. In order to guarantee the stability of the system, three adaptive control laws are constructed because of the unknown nonlinear function parameters and the unmodeled uncertainty. Finally, two examples are given to illustrate the effectiveness of the proposed method. In our future work, we would like to focus on the fault-tolerant control methods for multiple faults and disturbances and their applications.
 +
 
 +
==References==
  
==Reference==
+
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
  
[1]. B. Xiao, Q. Hu, and Y. Zhang, “Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation”, ''IEEE Trans. control Syst. Technol,'' vol.20, no.6, pp.1605–1612, Nov.2012.
+
[1] Xiao B., Hu Q., Zhang Y. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation, IEEE Trans. control Syst. Technol, 20(6):1605–1612, 2012.
  
[2]. R. Wang, and J. Wang, “Passive Actuator Fault-Tolerant Control for a Class of Over actuated Nonlinear Systems and Applications to Electric Vehicles”, ''IEEE Trans. Veh. Technol.'', vol.62, no.3, pp. 972–985, Mar.2013.
+
[2] Wang R.Wang J. Passive actuator fault-tolerant control for a class of over actuated nonlinear systems and applications to electric vehicles, IEEE Trans. Veh. Technol., 62(3):972–985, 2013.
  
[3]. F.J Lin, Y.C. Hung, and M.T. Tsai, “Fault-Tolerant Control for Six-Phase PMSM Drive System via Intelligent Complementary Sliding Mode Control Using TSKFNN-AMF”, ''IEEE Trans. Ind. Electron.'', vol.60, no.12, pp. 5747–5762, Dec.2013.
+
[3] Lin F.J., Hung Y.C., Tsai M.T. Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF, IEEE Trans. Ind. Electron., 60(12):5747–5762, 2013.
  
[4]. J. Shao, Z. Deng, and Y. Gu, Fault-Tolerant Control of Position Signals for Switched Reluctance Motor Drives, ''IEEE Trans Ind. Appli.'', vol.53 no.3, pp.2959-2966, May.2017.
+
[4] Shao J., Deng Z.,   Gu Y. Fault-tolerant control of position signals for switched reluctance motor drives, IEEE Trans Ind. Appli., 53(3):2959-2966, 2017.
  
[5]. Y. Wang, L. Xie, and C. E. de Souza, “Robust control of a class of uncertain nonlinear systems,”'' Syst. Control Lett.'', vol. 19, no. 2, pp. 139–149, Aug.1992.
+
[5] Wang  Y., Xie L.,   de Souza C.E. Robust control of a class of uncertain nonlinear systems, Syst. Control Lett., 19(2):139–149, 1992.
  
[6]. P. Shi, M. Liu, and L. Zhang, “Fault-tolerant sliding mode observer synthesis of Markovian jump systems using quantized measurements,” ''IEEE Trans. Ind. Electron.'', vol. 62, no. 9, pp. 5910–5918, Sep. 2015.
+
[6] Shi P., Liu M., Zhang L. Fault-tolerant sliding mode observer synthesis of Markovian jump systems using quantized measurements, IEEE Trans. Ind. Electron., 62(9):5910–5918, 2015.
  
[7]. Q. Hu and B. Xiao, “Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness,”'' Nonlin. Dyn.'', vol. 64, no. 1, pp. 13–23, Jun.2011.
+
[7] Hu Q.,  Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness, Nonlin. Dyn., 64(1):13–23, 2011.
  
[8]. S.K. Kommuri, M. Defoort, H.R. Karimi,and K.C. Veluvolu, “A Robust Observer-Based Sensor Fault-Tolerant Control for PMSM in Electric Vehicles”, ''IEEE Trans. Ind. Electron''., vol. 63, no. 12, pp. 7671–7681, Dec. 2016.
+
[8] Kommuri S.K., Defoort M., Karimi H.R.,  Veluvolu K.C. A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles, IEEE Trans. Ind. Electron., 63(12):7671–7681, 2016.
  
[9]. K. Patan, “Neural network-based model predictive control: Fault tolerance and stability,” ''IEEE Trans. Control Syst. Technol.'', vol. 23, no. 3, pp. 1147–1155, May 2015.
+
[9] Patan K. Neural network-based model predictive control: Fault tolerance and stability, IEEE Trans. Control Syst. Technol., 23(3):1147–1155, 2015.
  
[10]. G.H. Yang and D. Ye, “Reliable   control of linear systems with adaptive mechanism,”'' IEEE Trans. Autom. Control,'' vol. 55, no. 1, pp. 242–247, Jan. 2010.
+
[10] Yang G.H.,  Ye  D. Reliable   control of linear systems with adaptive mechanism, IEEE Trans. Autom. Control, 55(1):242–247, 2010.
  
[11]. W. Wang and C. Y. Wen, “Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance,” ''Automatica'', vol. 46, no. 12, pp. 2082–2091, Dec.2010.
+
[11] Wang W.,  Wen C.Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance, Automatica, 46(12):2082–2091, 2010.
  
[12]. D. Ye, and G.H.Yang, “Adaptive fault-tolerant tracking control against actuator faults with application to flight control”, ''IEEE Trans. Control Syst. Technol.'', 14, pp. 1088–1096, Nov.2006.
+
[12] Ye D., Yang G.H. Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans. Control Syst. Technol., 14:1088–1096, 2006.
  
[13]. Z. Zuo, D.W.C. Ho, and Y.Wang, “Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation”, ''Automatica'', vol. 46, no.3, pp. 569–576, Mar.2010.
+
[13] Zuo Z., Ho D.W.C., Wang Y. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation, Automatica, 46(3):569–576, 2010.
  
[14]. S. C. Tong, B. Huo, and Y. M. Li, “Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures,” ''IEEE Trans. Fuzzy Syst.'', vol. 22, no. 1, pp. 1–15, Feb. 2014.
+
[14] Tong S.C., Huo B., Li Y.M. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures, IEEE Trans. Fuzzy Syst., 22(1):1–15, 2014.
  
[15]. Y.X. Li, and G.H. Yang, “Robust Adaptive Fault-Tolerant Control for a Class of Uncertain Nonlinear Time Delay Systems”, ''IEEE Trans. Syst, Man, Cybern, Syst.'', vol.47, no.7, pp. 1554-1563, Jul.2017.
+
[15] Li Y.X., Yang G.H. Robust adaptive fault-tolerant control for a class of uncertain nonlinear time delay systems, IEEE Trans. Syst, Man, Cybern, Syst., 47(7):1554-1563, 2017.
  
[16]. M.Van, S.S. Ge, and H .Ren, “Robust Fault-Tolerant Control for a Class of Second-Order Nonlinear Systems Using an Adaptive Third-Order Sliding Mode Control”, ''IEEE Trans. Syst, Man, Cybern, Syst.'', vol.47, no.2, pp. 221-228, Feb. 2017.
+
[16] Van M., Ge S.S., Ren H. Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control, IEEE Trans. Syst, Man, Cybern, Syst., 47(2):221-228, 2017.
  
[17]. Y.W. Liang, S.D. Xu, and C.L. Tsai, “Study of VSC reliable designs with application to spacecraft attitude stabilization,” ''IEEE Trans. Control Syst. Technol.'', vol. 15, no. 2, pp. 332–338, Mar. 2007.
+
[17] Liang Y.W., Xu S.D., Tsai C.L. Study of VSC reliable designs with application to spacecraft attitude stabilization, IEEE Trans. Control Syst. Technol., 15(2):332–338, 2007.
  
[18]. C.J. Kempf, and S. Kobayashi. “Disturbance observer and feed forward design for a high-speed direct-drive position table”, ''IEEE Trans. Control Syst. Technol.'', vol. 7, no.5, pp.513–526, Sep.1999.
+
[18] Kempf C.J., Kobayashi S. Disturbance observer and feed forward design for a high-speed direct-drive position table, IEEE Trans. Control Syst. Technol., 7(5):513–526, 1999.
  
[19]. X.S. Chen, J. Yang, S.H. Li, and Q. Li ,‘Disturbance observer based multi-variable control of ball mill grinding circuits’, ''J. Process Control'', vol.19, no.7, pp. 1205–1213, Jul.2009.
+
[19] Chen X.S., Yang J., Li S.H.Li Q. Disturbance observer based multi-variable control of ball mill grinding circuits, J. Process Control, 19(7):1205–1213, 2009.
  
[20]. W.H. Chen, “Disturbance observer based control for nonlinear systems”, ''IEEE/ASME Trans. Mechatronics'', vol.9, no.4, pp. 706–710, Dec. 2004.
+
[20] Chen W.H. Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mechatronics, 9(4):706–710, 2004.
  
[21]. X. Yao and L. Guo, “Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer,” ''Automatica'', vol. 49, no. 8, pp. 2538–2545, Aug. 2013.
+
[21] Yao X.,  Guo L. Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica, 49(8):2538–2545, 2013.
  
[22]. H.N. Wu, ZY. Liu, and L. Guo, “Robust <math>L_{\infty }</math> -gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle,” ''IEEE Trans. Fuzzy Syst.'', vol. 22, no. 6, pp. 1401–1412, Dec. 2014.
+
[22] Wu H.N., Liu Z.Y., Guo  L. Robust <math>L_{\infty }</math>-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle, IEEE Trans. Fuzzy Syst., 22(6):1401–1412, 2014.
  
[23]. H. Zhang, J .Han, C. Luo, and Y. Wang, “Fault-Tolerant Control of a Nonlinear System Based on Generalized Fuzzy Hyperbolic Model and Adaptive Disturbance Observer”, ''IEEE Trans. Syst, Man, Cybern, Syst.'', 47 (8) :2289-2300, Aug.2017.
+
[23] Zhang H., Han J., Luo C., Wang Y. Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer, IEEE Trans. Syst, Man, Cybern, Syst., 47(8):2289-2300, 2017.
  
[24]. X.J. Wei, and L. Guo, “Composite disturbance-observer-based control and H-infinity control for complex continuous models”, ''Int. J. Robust Nonlinear Control'', 20, (1), pp. 106–118, Apr.2009.
+
[24] Wei X.J., Guo L. Composite disturbance-observer-based control and H-infinity control for complex continuous models, Int. J. Robust Nonlinear Control, 20(1):106–118, 2009.
  
[25]. J. Yang, S. Li, and X. Yu, “Sliding-Mode Control for Systems With Mismatched Uncertainties via a Disturbance Observer”, ''IEEE Trans. Ind. Electron.'', 60 (1) :160-169, Jan.2013.
+
[25] Yang J., Li S., Yu X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Trans. Ind. Electron., 60 (1):160-169, 2013.
  
[26]. H. S. Wu, “Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays,” ''IEEE Trans. Autom. Control'', vol. 49, no. 4, pp. 611–616, Apr. 2004.
+
[26] Wu H.S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays, IEEE Trans. Autom. Control, 49(4):611–616, 2004.
  
[27]. J.W. Zhu, and G.H Yang, “Fault-tolerant control for linear systems with multiple faults and disturbances based on augmented intermediate estimator”, ''IET Control Theory & Applications'', vol.11, no.2, pp.164-172, Jan.2017.
+
[27] Zhu J.W., Yang G.H. Fault-tolerant control for linear systems with multiple faults and disturbances based on augmented intermediate estimator, IET Control Theory & Applications, 11(2):164-172, 2017.

Latest revision as of 11:46, 19 March 2024

Abstract

In this paper, a class of nonlinear systems with mismatched disturbance and actuator failure is investigated. A disturbance observer is proposed to estimate the disturbance first and the error of the estimation converges to zero exponentially. By introducing an integral sliding mode surface, the disturbance observer-based integral sliding mode fault tolerant control scheme is proposed to attenuate the disturbance and guarantee the stability of the system. In particular, the control law is designed for decoupling the partial disturbance and attenuating the disturbance that cannot be decoupled. Finally, two examples are given to illustrate the effectiveness of the proposed method.

Keywords: Actuator fault, fault tolerant control (FTC), disturbance observer, adaptive integral sliding mode control, nonlinear system

1. Introduction

Faults frequently occur in the engineering system because of the increasing complexity and scalability of industrial applications. Unexpected deviations of performance or system parameters can induce serious damage and even break down the system in the presence of a fault. With the growing demand for higher reliability, safety, and maintainability, it is desired that the fault can be detected at the early stage, determine the location and magnitude of the fault, identify the severity of the fault, and then accommodate the effects on the system and provide an acceptable performance. Abundant of results have been reported on the theme and many achievements have been applied to industrial systems such as aircraft systems [1], electric systems [2], and motor systems [3-4], etc. Many excellent methods were exploited such as robust control [5], sliding mode control [6-7], observer-based control [8], intelligent learning control [9], and adaptive control [10-11].

As aforementioned, the fault is vulnerable to occur in the practical system, which certainly reduces the nominal performance, results in vibration, destroys the stability of the system, and even causes catastrophic accidents. Actuator fault as the most common fault has caused wide attention. In Ye and Yang [12], the flight tracking control system with actuator fault was investigated; an adaptive controller was designed. In Zuo et al. [13], a class of singular systems with actuator saturation was developed; an adaptive controller was designed to compensate for the fault effects through the linear matrix inequality (LMI) technique. A class of nonlinear large-scale systems with actuator fault was considered and an observer-based fuzzy adaptive control was developed in Tong et al. [14]. The problem of part loss of effectiveness of the actuator was addressed in Li and Yang [15]. In Van et al. [16], a class of nonlinear systems with partial loss of actuator was considered; a third-order sliding model control was developed to compensate for the actuator faults. These results have considered linear or nonlinear systems, however, the nonlinear function either satisfies the matched condition [16], i.e., the nonlinear function is in the control channel.

It is worth pointing out that disturbance exists widely in many industrial processes, which affects the stability of the system seriously. The basic characteristics of disturbance are its uncertainty, nonlinearity, and complexity. In some cases, the fault is considered as an additional uncertainty, disturbance, or nonlinear function in the system [16,17]. The common method is to make a compensator, i.e. construct an anti-disturbance mechanism to compensate for the disturbance. As the characteristics of the disturbance, observer design is necessary and popular in the existing literature, i.e., disturbance observer (DO). In Kempf and Kobayashi [18], a precision positioning table system was studied and a discrete time-tracking controller was designed based on the DO. In Chen et al. [19], the ball mill grinding circuits system was investigated and a DO was designed to estimate the strong disturbance, the controller was designed based on the observer to compensate for the disturbance. In Chen [20], a class of nonlinear systems was investigated, by introducing a disturbance generator; the DO-based control law was established. Yao and Guo [21] addressed a class of Markovian jump systems with multiple disturbances; the control law was designed by integrating the DO output information and state feedback control. Wu et al. [22] take an insight into a generic hypersonic vehicle system with modeled and unmodeled disturbances. In these results, the disturbance matrix and the control matrix are assumed to satisfy the match condition, i.e., , this limitation may not be applicable in some control processes.

It should be pointed out that the mismatched disturbance, that is, the disturbance enters the system in different channels, is more practical in industrial dynamic systems. In Zhang et al. [23], a class of nonlinear systems with actuator fault, sensor fault, and mismatched disturbance was considered. In Wei and Guo [24], the disturbance was considered as two parts, the matched disturbance was compensated by the DO while the mismatched disturbance was attenuated by variable structure control. In Yang et al. [25], by constructing a nonlinear disturbance observer (NDO), the sliding mode control scheme was developed to counteract the mismatched disturbance.

Based on the aforementioned analysis, this paper attempts to solve the FTC problem for a class of nonlinear systems with actuator fault and mismatched disturbance. The main works can be summarized as follows. First of all, an improved nonlinear disturbance observer is designed to estimate the mismatched disturbance. Then, the integral sliding mode controller is presented based on the observer, where the reachability of sliding motion is proved. Furthermore, the mismatched disturbance is divided into two parts, in which the matched part is compensated by the disturbance information while the remaining part is attenuated by the adaptive controller. Finally, the adaptive control law is proposed, which can adaptively adjust controller parameters to compensate for the fault and disturbance. The effectiveness of the method is verified through two examples.

The remaining part of this paper is organized as follows. In section 2, the system description and some assumptions are presented. In section 3, the construction of the observer and the design of the controller are presented. In section 4, two simulation examples are used to illustrate the effectiveness of the method, and some conclusions are obtained in section 5.

2. Problem formulation

Consider the following nonlinear system with actuator fault and mismatched disturbance as

(1)

where is the state vector, is the output of the system, is the control input, is a nonlinear function, which can be regarded as the un-modeled uncertainty, is the unmatched external disturbance, is the mismatched nonlinearity, , , , and are known constant coefficient matrices with appropriate dimensions.

In this paper, the actuator failure problem is concerned. The actuators can be divided into two parts and , where stands for the health actuator and represent the actuator in a fault condition. Then system (1) becomes (2)

(2)

where and denote the healthy and fault matrices.

One can see that proposer designing of can guarantee the stability of the system despite the existence of external disturbance.

Assumption 1 [17]. The actuators in fault condition work abnormally, and the remaining actuators work normally.

With assumption 1, one can use and represent the actual control and designed control respectively for the actuators in fault condition. Then system (2) becomes (3)

(3)


where .

Assumption 2 [15]. There exists a known function and two unknown constants and , such that the following inequality holds,

.
(4)


Assumption 3. The disturbance and the derivative of the disturbance are bounded, i.e., , , where and are two positive constants.

Assumption 4. The nonlinearity function is bounded and satisfies the following condition

(5)

where and are two positive symmetry matrices, , .

Remark 1. The assumption 1 is general for the actuator failure condition [16,17], in which the actuator fault can be treated as an additional uncertainty or disturbance. Compared with the results in [26], the assumption 2 in this study has been much more relaxed. Assumption 3 is common in FTC control results [15]. Assumption 4 is more general compared with the traditional Lipschitz condition [16], it should be noted that if , and , then assumption 4 degenerates to the normal Lipschitz condition, where is the Lipschitz constant.

With assumptions 1 and 2, the object of the paper is to design a control law to compensate for the effects of the disturbance and fault so that the stability and convergence of the system can be guaranteed in normal and fault conditions.

3. Main results

In this part, an observer will be applied to estimate the external disturbance, and an observer-based integral sliding mode fault colorant control scheme will be designed.

3.1 Observer design

For the feasibility of the observer, the following assumption is necessary.

Assumption 5 [16]. The additional fault term satisfies the following condition, , where is a positive scalar.

For system (3), the following observer is proposed in the form of

(6)

where is the internal state of the observer, is the estimation of the disturbance , is a nonlinear function to be designed, is a parameter matrix with proper dimensions, and is the observer gain and satisfies the following condition

(7)

is the error compensator and is defined by

(8)

where .

Lemma 1. With the assumption 4 and the observer (6), the error of the observer converges to zero exponentially.

Proof. Define . From the observer (6), it is easy to obtain that

(9)

It can be derivate that

(10)


The solution of (9) is given by

(11)


From Eq.(10), one can deduce that

(12)


According to the inequality [3], where and are two positive constants. The one can obtain that

(13)

where is a constant bound satisfy . Define , then (13) can be written as . This completes the proof.

3.2 Adaptive FTC design

In this section, the observer-based integral sliding mode fault tolerant control will be designed. and are supposed to be unknown, the adaptive controller is designed as follows:

(14)

where

(15)
(16)

where , , and are the parameter functions to be designed

(17)
(18)
(19)

where and are two positive scalars, , and is defined in Eq.(23), is the bound of the nonlinear function , , and are the estimate of , and , and the adaptive control laws are designed in the form of

(20)
(21)
(22)

where , , , and are positive parameters.

The control law will be used in the integral sliding mode control, is used to make the system asymptotically stable, is used to compensate for the effects of the actuator fault, disturbance estimation error, and nonlinear factors. In this paper, the sliding mode switching function is designed as follows

(23)

where is a designed matrix that is invertible. In the next section, the reaching ability will be verified.

Theorem 1. With the controller in Eq.(14), the state strategies of the system will drive onto the sliding surface in finite time.

Proof. Denote , , . Consider the following Lyapunov function candidate

(24)


From the expression (20), the time derivative of is

(25)


From assumption 2, one has

(26)


From Eq.(23), one has

(27)


The time derivative of Eq.(35) can be determined as

(28)


By introducing Eqs.(17)-(27), Eq.(28) can be rewritten as

(29)


Thus, the reaching ability is satisfied, this completes the proof.

Remark 2. The controller proposed in (14) is discontinuous, to reduce chattering in the practical implementation, the discontinuous function can be replaced, for example, can be replaced by , where is a small positive constant.

3.3 Stability analysis

In this section, the stability of the closed-loop system will be analyzed. By solving the equation in Eq.(25), the equivalent control law can be obtained as

(30)


Substituting Eqs.(26) and (30) into the system (3) yields

(31)


By defining , , , Eq.(31) can be rewritten as

(32)


As before mentioned, the disturbance-matched condition is not satisfied, i.e. . From the definition of , we can easily check that . In this paper, the disturbance is divided into two parts, i.e.,

, ,

then can be written as

,

where


Let , and the parameter in Eq.(15) can be chosen as , where for and for . Then the equation is solvable. Note that and , where . Then (32) can be rewritten as

(33)


Remark 3. We can see that if , then , so the matched condition is a special case, i.e., this paper considers a more general case. In addition, we can also obtain that one of the solutions of is and is the general inverse of .

The object of the next part is to design , and such that the stability of the system can be guaranteed. The control laws are designed as follows

(34)
(35)
(36)

where , and are estimations of , and , respectively, and are designed in Eqs.(59) and (60), is a positive symmetry matrix, and is a continuous function, and satisfies

.
(37)

where is a positive scalar.

The adaptive updating control laws are given by

(38)
(39)
(40)

where , and are three positive constants.

Denote , , , we can obtain the following dynamics

(41)
(42)
(43)


Theorem 2. With the controller (34)-(36) and the adaptive control laws (38)-(40), the closed-loop system is stable if there exist two positive symmetry matrices and , such that the following condition holds

(44)

where , is defined in Eq.(5).

Proof. Design the Lyapunov function candidate as

(45)


Then the time derivative of Eq.(51) can be obtained as

(46)


From Eqs.(41)-(46), it can be derivative that

(47)
(48)
(49)
(50)
(51)
(52)


By assumptions 2, 4, 5, and lemma 1, we can derivative that the following inequalities hold

(53)
(54)
(55)

where and are positive scalars.

Substituting Eqs.(47)-(55), Eq.(46) can be rewritten as

(56)


Note that the following equalities

(57)
(58)
(59)


Substituting Eqs.(57)-(59) into (56) yields

(60)


For any positive scalar and , the following equality holds . Then we can obtain that

(61)

where .

According to Eq.(45), by integrating Eq.(61) yields

(62)

which means the system described in Eq.(33) is bounded. denotes the minimum eigenvalue of , and . Eq.(68) also implies

(63)


According to Barbalat Lemma, we have . This completes the proof.

Remark 4. Compared with the results in [15], where the nonlinear function is matched, i.e., is in the control channel. In this paper, exists in the different channel from the control input, i.e., which means that is more general.

4. Numerical examples

In this section, two examples are simulated to illustrate the effectiveness of the proposed method.

Example 1. In this example, the linearized longitudinal dynamic of the VTOL aircraft which is borrowed from [23] is considered. It is assumed that the system is subjected to unmodeled dynamics, actuator fault, and external disturbance. Then, the system can be described as system (1), where , is the horizontal velocity (), represents the vertical velocity (), is the pitch rate (), and expresses the pitch angle (). The parameters of the system are given as follows

, ,
, , .

The nonlinear unmodeled uncertainty and mismatched nonlinearity are assumed to be: , . The actuator fault and external are supposed to be as follows

, .

Note that the mismatched disturbance and the condition hold, hence that the traditional method will be failed in this example. Choosing the matrix , we can check that is invertible. By solving (50), we can obtain that

.


Choose , the results of the simulation are as follows.

Figure 1 shows the trajectory of the system. Figure 2 illustrates the estimation of the disturbance signals, the solid line is the original signal and the dashed line is the estimated value. From Figure 1, we can know that the states of the system have a fast response with the proposed method. In addition, the controller can ensure the stability of the system in the presence of the actuator fault and mismatched disturbance. Figure 2 characterizes that the observer has a good performance of the disturbance.

Review 187843964202-image241.png
Figure 1. Response of state


Review 187843964202-image243.png
Figure 2. Estimation of disturbance


In order to illustrate the importance of the disturbance observer, the responses of the system are shown in Figure 3 without the disturbance observer. From the figure, we can see that the closed-loop system becomes unstable when removing the disturbance observer and compensator.

Review 187843964202-image245.png
Figure 3. Response of state without disturbance compensator


Example 2. In this section, the two-cart system which borrowed form is provided to illustrate the effectiveness of the proposed method [27].

As shown in Figure 4, the first cart is connected to a rigid wall via a damper, and is connected to a second cart by a spring. The external force is applied to a second cart via an actuator. Both carts have a nominal mass of , the damper has a constant of , and the spring constant . The time constant of the actuator . The states are the force, velocities, and positions of the two carts. The actuator fault and mismatched disturbance are considered. The system parameters are given as follows

, , , , .
Review 187843964202-image246.png
Figure 4. Geometric structure of the two-cart system


The nonlinear unmodeled uncertainty and mismatched nonlinearity are assumed to be: , . The actuator fault and external are supposed to be as follows

,
,
.


Choosing the matrix , we can check that is invertible. By solving Eq.(50), we can obtain that

.


Choose , the results of the simulation are as follows.

Figures 5 and 6 express the trajectories of the system. From Figures 5 and 6, we can see that the stability of the positions and velocities of the first and second carts can be guaranteed. Figure 7 shows the estimation of the external disturbance, we can check that the proposed method performs better than the intermediate method proposed in [27], precisely, the method proposed responds faster than the method in [27], and the proposed method has less chattering.

Review 187843964202-image261.png
Figure 5. Response of state , and


Review 187843964202-image265.png
Figure 6. Response of state and


Review 187843964202-image268.png
Figure 7. Estimation of disturbance


In order to illustrate the effectiveness of the proposed method, the responses of the system are shown in Figures 8 and 9 without the controller. From the figure, we can infer from this that the closed-loop system becomes unstable when removing the disturbance observer and compensator.

Review 187843964202-image269.png
Figure 8. Response of state , and without controller


Review 187843964202-image270.png
Figure 9. Response of state and without controller

5. Conclusion

In this paper, the problem of a general Lipschitz nonlinear system with actuator fault and unmatched disturbance is investigated. Specifically, a disturbance observer is designed to estimate the mismatched disturbance first. Then, an observer-based integral sliding mode fault tolerant control scheme is proposed. In order to guarantee the stability of the system, three adaptive control laws are constructed because of the unknown nonlinear function parameters and the unmodeled uncertainty. Finally, two examples are given to illustrate the effectiveness of the proposed method. In our future work, we would like to focus on the fault-tolerant control methods for multiple faults and disturbances and their applications.

References

[1] Xiao B., Hu Q., Zhang Y. Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation, IEEE Trans. control Syst. Technol, 20(6):1605–1612, 2012.

[2] Wang R., Wang J. Passive actuator fault-tolerant control for a class of over actuated nonlinear systems and applications to electric vehicles, IEEE Trans. Veh. Technol., 62(3):972–985, 2013.

[3] Lin F.J., Hung Y.C., Tsai M.T. Fault-tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF, IEEE Trans. Ind. Electron., 60(12):5747–5762, 2013.

[4] Shao J., Deng Z., Gu Y. Fault-tolerant control of position signals for switched reluctance motor drives, IEEE Trans Ind. Appli., 53(3):2959-2966, 2017.

[5] Wang Y., Xie L., de Souza C.E. Robust control of a class of uncertain nonlinear systems, Syst. Control Lett., 19(2):139–149, 1992.

[6] Shi P., Liu M., Zhang L. Fault-tolerant sliding mode observer synthesis of Markovian jump systems using quantized measurements, IEEE Trans. Ind. Electron., 62(9):5910–5918, 2015.

[7] Hu Q., Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness, Nonlin. Dyn., 64(1):13–23, 2011.

[8] Kommuri S.K., Defoort M., Karimi H.R., Veluvolu K.C. A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles, IEEE Trans. Ind. Electron., 63(12):7671–7681, 2016.

[9] Patan K. Neural network-based model predictive control: Fault tolerance and stability, IEEE Trans. Control Syst. Technol., 23(3):1147–1155, 2015.

[10] Yang G.H., Ye D. Reliable control of linear systems with adaptive mechanism, IEEE Trans. Autom. Control, 55(1):242–247, 2010.

[11] Wang W., Wen C.Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance, Automatica, 46(12):2082–2091, 2010.

[12] Ye D., Yang G.H. Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans. Control Syst. Technol., 14:1088–1096, 2006.

[13] Zuo Z., Ho D.W.C., Wang Y. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation, Automatica, 46(3):569–576, 2010.

[14] Tong S.C., Huo B., Li Y.M. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures, IEEE Trans. Fuzzy Syst., 22(1):1–15, 2014.

[15] Li Y.X., Yang G.H. Robust adaptive fault-tolerant control for a class of uncertain nonlinear time delay systems, IEEE Trans. Syst, Man, Cybern, Syst., 47(7):1554-1563, 2017.

[16] Van M., Ge S.S., Ren H. Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control, IEEE Trans. Syst, Man, Cybern, Syst., 47(2):221-228, 2017.

[17] Liang Y.W., Xu S.D., Tsai C.L. Study of VSC reliable designs with application to spacecraft attitude stabilization, IEEE Trans. Control Syst. Technol., 15(2):332–338, 2007.

[18] Kempf C.J., Kobayashi S. Disturbance observer and feed forward design for a high-speed direct-drive position table, IEEE Trans. Control Syst. Technol., 7(5):513–526, 1999.

[19] Chen X.S., Yang J., Li S.H., Li Q. Disturbance observer based multi-variable control of ball mill grinding circuits, J. Process Control, 19(7):1205–1213, 2009.

[20] Chen W.H. Disturbance observer based control for nonlinear systems, IEEE/ASME Trans. Mechatronics, 9(4):706–710, 2004.

[21] Yao X., Guo L. Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica, 49(8):2538–2545, 2013.

[22] Wu H.N., Liu Z.Y., Guo L. Robust -gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle, IEEE Trans. Fuzzy Syst., 22(6):1401–1412, 2014.

[23] Zhang H., Han J., Luo C., Wang Y. Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer, IEEE Trans. Syst, Man, Cybern, Syst., 47(8):2289-2300, 2017.

[24] Wei X.J., Guo L. Composite disturbance-observer-based control and H-infinity control for complex continuous models, Int. J. Robust Nonlinear Control, 20(1):106–118, 2009.

[25] Yang J., Li S., Yu X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE Trans. Ind. Electron., 60 (1):160-169, 2013.

[26] Wu H.S. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays, IEEE Trans. Autom. Control, 49(4):611–616, 2004.

[27] Zhu J.W., Yang G.H. Fault-tolerant control for linear systems with multiple faults and disturbances based on augmented intermediate estimator, IET Control Theory & Applications, 11(2):164-172, 2017.
Back to Top

Document information

Published on 19/03/24
Accepted on 28/02/24
Submitted on 15/02/24

Volume 40, Issue 1, 2024
DOI: 10.23967/j.rimni.2024.03.002
Licence: CC BY-NC-SA license

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?