(28 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
==Reliable iterative techniques for solving the KS equation arising in fluid flow ==
 
==Reliable iterative techniques for solving the KS equation arising in fluid flow ==
 
-->
 
-->
 
 
==Abstract==
 
==Abstract==
  
 
In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide <math>\omega _{n}</math>-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct examples to confirm the efficiency and applicability of the proposed strategies. The acquired outcomes are compared numerically with the q-homotopy analysis transform method (q-HATM). The numerical investigation is carried out to validate the precision and dependability of the approaches under consideration. Additionally, the nature of the outcomes gained has been displayed in a different order. The obtained results show that the proposed techniques are highly efficient and simple to use to analyze the behavior of other nonlinear models.
 
In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide <math>\omega _{n}</math>-curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct examples to confirm the efficiency and applicability of the proposed strategies. The acquired outcomes are compared numerically with the q-homotopy analysis transform method (q-HATM). The numerical investigation is carried out to validate the precision and dependability of the approaches under consideration. Additionally, the nature of the outcomes gained has been displayed in a different order. The obtained results show that the proposed techniques are highly efficient and simple to use to analyze the behavior of other nonlinear models.
  
'''Keywords:''' Kuramoto-Sivashinsky equation; Laplace transform; Natural decomposition method (NDM); Temimi-Ansari method (TAM).
+
'''Keywords''': Kuramoto-Sivashinsky equation, Laplace transform, natural decomposition method (NDM), Temimi-Ansari method (TAM)
  
==1 Introduction==
+
==1. Introduction==
  
 
Since nearly three centuries ago, fractional calculus has always been considered a purely mathematical problem [1-3]. Despite having a long history, it was not utilized in both engineering and physics for an extended period of time. In recent decades, fractional calculus has attracted growing interest from a practical perspective among scientists [4-6]. In the disciplines of continuous-time simulation, numerous experts have noted that fractional derivatives are useful for describing linear viscoelasticity, rheology, acoustics, polymerization chemistry, etc. In addition, fractional derivatives have proven to be a useful instrument for describing the memory and inherited properties of diverse substances and procedures. The mathematical principles and practical implications of these operators are currently well-developed, and their applicability to the fields of science and engineering is viewed as a topic of interest. In physics, chemistry, and engineering [7-8], fractional derivatives have appeared in equations used to characterize dynamical processes; consequently, fractional-order differential equations (FDEs) are the subject of an increasing number of studies.
 
Since nearly three centuries ago, fractional calculus has always been considered a purely mathematical problem [1-3]. Despite having a long history, it was not utilized in both engineering and physics for an extended period of time. In recent decades, fractional calculus has attracted growing interest from a practical perspective among scientists [4-6]. In the disciplines of continuous-time simulation, numerous experts have noted that fractional derivatives are useful for describing linear viscoelasticity, rheology, acoustics, polymerization chemistry, etc. In addition, fractional derivatives have proven to be a useful instrument for describing the memory and inherited properties of diverse substances and procedures. The mathematical principles and practical implications of these operators are currently well-developed, and their applicability to the fields of science and engineering is viewed as a topic of interest. In physics, chemistry, and engineering [7-8], fractional derivatives have appeared in equations used to characterize dynamical processes; consequently, fractional-order differential equations (FDEs) are the subject of an increasing number of studies.
Line 35: Line 34:
 
The second method is the fractional natural decomposition method (FNDM) Rawashdeh and Maitama [37] propose this method using ADM and natural transform (NT). The method under consideration is a combination of an effective system and a natural transform, which may decrease massive computation while increasing reliability. In addition, the contemplated scheme necessitates no linearization, discretization, and transforming of partial to ordinary differential equations, or physical parameter assumptions. This allows nonlinear and complex issues to be solved with a straightforward procedure. Numerous authors have utilized it to analyze and discover solutions to numerous real-world problems.
 
The second method is the fractional natural decomposition method (FNDM) Rawashdeh and Maitama [37] propose this method using ADM and natural transform (NT). The method under consideration is a combination of an effective system and a natural transform, which may decrease massive computation while increasing reliability. In addition, the contemplated scheme necessitates no linearization, discretization, and transforming of partial to ordinary differential equations, or physical parameter assumptions. This allows nonlinear and complex issues to be solved with a straightforward procedure. Numerous authors have utilized it to analyze and discover solutions to numerous real-world problems.
  
==2 Preliminaries to FC==
+
==2. Preliminaries to FC==
  
Here, the fundamental definition of Natural transform (NT) and FC are presented [38-39]
+
Here, the fundamental definition of Natural transform (NT) and FC are presented [38-39].
  
 
===Definition 1===
 
===Definition 1===
Line 62: Line 61:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>D_{\iota }^{\sigma }=\begin{cases}\frac{d^{n}f(\iota )}{d\iota ^{n}},\left(\sigma =n\in N\right),\\ \frac{1}{\Gamma (n-\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{(n-\sigma{-1)}}f^{(n)}(\upsilon )d\upsilon ,\left((n-1)<\sigma{<}n,n\in N\right.). \end{cases} </math>
+
| style="text-align: center;" | <math>D_{\iota }^{\sigma }=\begin{cases}\displaystyle\frac{d^{n}f(\iota )}{d\iota ^{n}},\left(\sigma =n\in N\right),\\ \displaystyle\frac{1}{\Gamma (n-\sigma )}\int _{0}^{\iota }(\iota{-\upsilon})^{(n-\sigma{-1)}}f^{(n)}(\upsilon )d\upsilon ,\left((n-1)<\sigma{<}n,n\in N\right.). \end{cases} </math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
Line 111: Line 110:
 
|}
 
|}
  
==3 The fundamental ideas of two iterative approaches==
+
==3. The fundamental ideas of two iterative approaches==
  
 
An algorithm known as the iterative technique produces a series of improved approximations to a set of issues. When the appropriate sequence is converging at some specified initial approximations, the iterative approach produces an approximate solution that converges to the exact solution.
 
An algorithm known as the iterative technique produces a series of improved approximations to a set of issues. When the appropriate sequence is converging at some specified initial approximations, the iterative approach produces an approximate solution that converges to the exact solution.
Line 180: Line 179:
 
|}
 
|}
  
In this technique, it is crucial to remember that any of the <math display="inline">\omega _{n+1}\left(\vartheta ,\iota \right)</math> is individually a solution to the problem ([[#eq-7|7]]). We confirm that these iterative stages are simple to carry out and that each solution is an improvement over the previous iteration. The convergence of solutions must be confirmed by comparing successive solutions to the prior iteration. The analytical solution and the exact solution to the issue ([[#eq-7|7]]) converge as more iterations are made. This allows for the development of an adequate analytical solution with the exact solution as
+
In this technique, it is crucial to remember that any of the <math display="inline">\omega _{n+1}\left(\vartheta ,\iota \right)</math> is individually a solution to the problem (Eq. [[#eq-7|(7)]]). We confirm that these iterative stages are simple to carry out and that each solution is an improvement over the previous iteration. The convergence of solutions must be confirmed by comparing successive solutions to the prior iteration. The analytical solution and the exact solution to the issue (Eq. [[#eq-7|(7)]]) converge as more iterations are made. This allows for the development of an adequate analytical solution with the exact solution as
  
 
<span id="eq-11"></span>
 
<span id="eq-11"></span>
Line 188: Line 187:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptstyle {\scriptscriptstyle n\rightarrow \infty }}} {lim} \omega_{n} (\vartheta ,\iota{)}. </math>
+
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptstyle {\scriptscriptstyle n\rightarrow \infty }}} {\lim} \omega_{n} (\vartheta ,\iota{)}. </math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
Line 227: Line 226:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[\omega \left(\vartheta ,\iota \right)\right] =  \frac{q^{\sigma }}{s^{\sigma }}\sum _{i=0}^{n-1}\frac{q^{i-\sigma }}{s^{i+1-\sigma }}\left[D^{i}\omega \left(\vartheta ,\iota \right)\right]_{\iota=0}+\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)\right]-\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )\right]. </math>
+
| style="text-align: center;" | <math>\mathbb{N}^{+}\left[\omega \left(\vartheta ,\iota \right)\right] =  \frac{q^{\sigma }}{s^{\sigma }}\sum _{i=0}^{n-1}\frac{q^{i-\sigma }}{s^{i+1-\sigma }}\left[D^{i}\omega \left(\vartheta ,\iota \right)\right]_{\iota=0}+</math> <math>\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\hbar \left(\vartheta ,\iota \right)\right]-\frac{q^{\sigma }}{s^{\sigma }}\mathbb{N}^{+}\left[\mathcal{R}\omega (\vartheta ,\iota )+\mathcal{F}\omega (\vartheta ,\iota )\right]. </math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
Line 280: Line 279:
 
|}
 
|}
  
==4 Numerical examples of the KS models==
+
==4. Numerical examples of the KS models==
  
 
This section demonstrates how the iterative methods TAM and NDM will be used to solve the fractional Kuramoto-Sivashinsky problem.
 
This section demonstrates how the iterative methods TAM and NDM will be used to solve the fractional Kuramoto-Sivashinsky problem.
Line 313: Line 312:
 
The two iterative approaches that have been suggested will be used to resolve this issue.
 
The two iterative approaches that have been suggested will be used to resolve this issue.
  
'''Solving the Example 1 by Tthe AM: '''
+
'''Solving the Example 1 by Tthe AM '''
  
 
By using the fractional TAM by first formulating the problem as
 
By using the fractional TAM by first formulating the problem as
Line 322: Line 321:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad \Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad w(\vartheta ,\iota )=0. </math>
+
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad</math> <math>\Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }-\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad </math> <math>w(\vartheta ,\iota )=0. </math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
Line 435: Line 434:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
+
| style="text-align: center;" | <math>\omega (\vartheta ,\iota )  =  \underset{{\scriptscriptstyle n\rightarrow \infty }}{\lim}\omega _{n}(\vartheta ,\iota )\simeq \omega _{2}(\vartheta ,\iota{).} </math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
Line 453: Line 452:
 
|}
 
|}
  
'''Solving the Example 1 by the DM: '''
+
'''Solving the Example 1 by the DM'''
  
 
Eq. ([[#eq-19|19]]) may be simplified by applying NT to it
 
Eq. ([[#eq-19|19]]) may be simplified by applying NT to it
Line 575: Line 574:
 
|}
 
|}
  
And so on. The behavior of a collection of approximate solutions obtained in Figure 1 and Table 1.
+
And so on. The behavior of a collection of approximate solutions obtained in [[#img-1|Figure 1]] and [[#tab-1|Table 1]].
  
 
<div id='img-1'></div>
 
<div id='img-1'></div>
<div id='img-1'></div>
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
<div id='img-1'></div>
+
|-style="background:white;"
<div id='img-1'></div>
+
|align="center" |
<div id='img-1'></div>
+
{|style="margin: 0em auto 0.1em auto;width:auto;"  
<div id='img-1f'></div>
+
|+
<div id='img-1'></div>
+
|-
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-ex.png|252px|Exact solution of ω(ϑ,ι).]]
 +
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-NDM.png|252px|Approximate solution of ω(ϑ,ι).]]
 
|-
 
|-
|[[Image:Draft_Hagag_330916598-KS1-ex.png|232px|Exact solution of ω(ϑ,ι).]]
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(a) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>
|[[Image:Draft_Hagag_330916598-KS1-NDM.png|232px|Approximate solution of ω(ϑ,ι).]]
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(b) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{)}</math>
|- style="text-align: center; font-size: 75%;"
+
| (1) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>.
+
| (1) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{).}</math>
+
 
|-
 
|-
|[[Image:Draft_Hagag_330916598-KS1-error1.png|232px|Absolute error at ι=1.]]
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-error1.png|252px|Absolute error at ι=1.]]
|[[Image:Draft_Hagag_330916598-KS1-ex+app.png|232px|Representation of the approximate solution with the exact solution.]]
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-ex+app.png|252px|Representation of the approximate solution with the exact solution.]]
|- style="text-align: center; font-size: 75%;"
+
| (1) Absolute error at <math display="inline">\iota=1</math>.
+
| (1) Representation of the approximate solution with the exact solution.
+
 
|-
 
|-
|[[Image:Draft_Hagag_330916598-KS1(w0+w1+w2).png|232px|Comparative graphical simulation in the steady state.]]
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(c) Absolute error at <math display="inline">\iota=1</math>
|[[Image:Draft_Hagag_330916598-KS1-alpha.png|236px|The solution of the power series approaches the exact solution.]]
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(d) Representation of the approximate solution with the exact solution
|- style="text-align: center; font-size: 75%;"
+
|-
| (1) Comparative graphical simulation in the steady state.
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1(w0+w1+w2).png|252px|]]
| (f) The solution of the power series approaches the exact solution.
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS1-alpha.png|256px|]]
|- style="text-align: center; font-size: 75%;"
+
|-
| colspan="2" | '''Figure 1:''' The behavior of a collection of approximate solutions obtained for case (1) at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(e) Comparative graphical simulation in the steady state
 +
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(f) The solution of the power series approaches the exact solution
 
|}
 
|}
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 1'''. The behavior of a collection of approximate solutions obtained for case (1) at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>
 +
|}
 +
  
 +
<div style="font-size: 75%;text-align:center;">'''Table 1'''. Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-19|19]])  obtained by TAM algorithm and NDM with exact, <br> and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math></div>
  
{| class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
<div id='tab-1'></div>
|+ style="font-size: 75%;" |Table. 1 Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-19|19]]) obtained by TAM algorithm and NDM with exact, and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa =\frac{1}{2\sqrt{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
+
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"  
|-
+
|-style="text-align:center"
| <math display="inline">\vartheta </math>  
+
<math display="inline">\vartheta </math> !!  <math>\iota </math>!!  <math>\omega _{{\scriptscriptstyle TAM}}</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}</math> !!  <math>\omega _{{\scriptscriptstyle HATM}}</math> [30] !!  <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
| <math>\iota </math>
+
|-style="text-align:center"
| <math>\omega _{{\scriptscriptstyle TAM}}</math>
+
| <math>\omega _{{\scriptscriptstyle NDM}}</math>
+
| <math>\omega _{{\scriptscriptstyle HATM}}</math>[30]  
+
| <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math>
+
| <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
+
|-
+
 
| rowspan="5" | 1
 
| rowspan="5" | 1
 
| 0.2  
 
| 0.2  
Line 626: Line 620:
 
| 2.14599E06  
 
| 2.14599E06  
 
| 2.67151E06
 
| 2.67151E06
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 4.95147E07  
 
| 4.95147E07  
Line 633: Line 627:
 
| 2.08915E06  
 
| 2.08915E06  
 
| 5.50393E06
 
| 5.50393E06
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 2.78302E06  
 
| 2.78302E06  
Line 640: Line 634:
 
| 2.7345E06  
 
| 2.7345E06  
 
| 7.47041E06
 
| 7.47041E06
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 9.82780E06  
 
| 9.82780E06  
Line 647: Line 641:
 
| 1.67288E05  
 
| 1.67288E05  
 
| 5.46055E06
 
| 5.46055E06
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 2.69887E05  
 
| 2.69887E05  
Line 654: Line 648:
 
| 4.67056E05  
 
| 4.67056E05  
 
| 6.17336E06
 
| 6.17336E06
|-
+
|-style="text-align:center"
 
| rowspan="5" | 2
 
| rowspan="5" | 2
 
| 0.2  
 
| 0.2  
Line 662: Line 656:
 
| 1.35933E06  
 
| 1.35933E06  
 
| 1.69305E06
 
| 1.69305E06
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 3.15442E07  
 
| 3.15442E07  
Line 669: Line 663:
 
| 1.32002E06  
 
| 1.32002E06  
 
| 3.48849E06
 
| 3.48849E06
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 1.77395E06  
 
| 1.77395E06  
Line 676: Line 670:
 
| 1.75053E06  
 
| 1.75053E06  
 
| 4.72985E06
 
| 4.72985E06
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 6.26867E06  
 
| 6.26867E06  
Line 683: Line 677:
 
| 1.06596E05  
 
| 1.06596E05  
 
| 3.43118E06
 
| 3.43118E06
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 1.72293E05  
 
| 1.72293E05  
Line 690: Line 684:
 
| 2.97593E05  
 
| 2.97593E05  
 
| 4.02031E06
 
| 4.02031E06
|-
+
|-style="text-align:center"
 
| rowspan="5" | 3
 
| rowspan="5" | 3
 
| 0.2  
 
| 0.2  
Line 698: Line 692:
 
| 8.60648E07  
 
| 8.60648E07  
 
| 1.07236E06
 
| 1.07236E06
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 2.00629E07  
 
| 2.00629E07  
Line 705: Line 699:
 
| 8.34089E07  
 
| 8.34089E07  
 
| 2.20978E06
 
| 2.20978E06
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 1.12877E06  
 
| 1.12877E06  
Line 712: Line 706:
 
| 1.11763E06  
 
| 1.11763E06  
 
| 2.99357E06
 
| 2.99357E06
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 3.99093E06  
 
| 3.99093E06  
Line 719: Line 713:
 
| 6.78091E06  
 
| 6.78091E06  
 
| 2.15839E06
 
| 2.15839E06
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 1.09764E05  
 
| 1.09764E05  
Line 726: Line 720:
 
| 1.89302E05  
 
| 1.89302E05  
 
| 2.60114E06
 
| 2.60114E06
|-
+
|-style="text-align:center"
 
| rowspan="5" | 4
 
| rowspan="5" | 4
 
| 0.2  
 
| 0.2  
Line 734: Line 728:
 
| 5.44714E07  
 
| 5.44714E07  
 
| 6.78920E07
 
| 6.78920E07
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 1.27440E07  
 
| 1.27440E07  
Line 741: Line 735:
 
| 5.27063E07  
 
| 5.27063E07  
 
| 1.39914E06
 
| 1.39914E06
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 7.17241E07  
 
| 7.17241E07  
Line 748: Line 742:
 
| 7.12053E07  
 
| 7.12053E07  
 
| 1.89411E06
 
| 1.89411E06
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 2.53701E06  
 
| 2.53701E06  
Line 755: Line 749:
 
| 4.30781E06  
 
| 4.30781E06  
 
| 1.35897E06
 
| 1.35897E06
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 6.98135E06  
 
| 6.98135E06  
Line 762: Line 756:
 
| 1.20257E05  
 
| 1.20257E05  
 
| 1.67448E06
 
| 1.67448E06
|-
+
|-style="text-align:center"
 
| rowspan="5" | 5
 
| rowspan="5" | 5
 
| 0.2  
 
| 0.2  
Line 770: Line 764:
 
| 3.44656E07  
 
| 3.44656E07  
 
| 4.29680E07
 
| 4.29680E07
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 8.08663E08  
 
| 8.08663E08  
Line 777: Line 771:
 
| 3.33064E07  
 
| 3.33064E07  
 
| 8.85550E07
 
| 8.85550E07
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 4.55248E07  
 
| 4.55248E07  
Line 784: Line 778:
 
| 4.52901E07  
 
| 4.52901E07  
 
| 1.19818E06
 
| 1.19818E06
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 1.61084E06  
 
| 1.61084E06  
Line 791: Line 785:
 
| 2.73379E06  
 
| 2.73379E06  
 
| 8.56270E07
 
| 8.56270E07
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 4.43460E06  
 
| 4.43460E06  
Line 798: Line 792:
 
| 7.63155E06  
 
| 7.63155E06  
 
| 1.07374E06
 
| 1.07374E06
 
 
|}
 
|}
  
Line 839: Line 832:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad \Phi \left(\omega (\vartheta ,\iota )\right)=\omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad w(\vartheta ,\iota )=0. </math>
+
| style="text-align: center;" | <math>\Upsilon \left(\omega (\vartheta ,\iota )\right)=D_{\iota }^{\sigma }\omega (\vartheta ,\iota )=\frac{\partial ^{\sigma }\omega (\vartheta ,\iota )}{\partial \iota ^{\sigma }},\quad</math><math> \Phi \left(\omega (\vartheta ,\iota )\right)= \omega (\vartheta ,\iota )\frac{\partial \omega (\vartheta ,\iota )}{\partial \vartheta }+\frac{\partial ^{2}\omega (\vartheta ,\iota )}{\partial \vartheta ^{2}}</math><math>+\frac{\partial ^{4}\omega (\vartheta ,\iota )}{\partial \vartheta ^{4}},\quad </math><math> w(\vartheta ,\iota )=0. </math>
 
|}
 
|}
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
Line 1,051: Line 1,044:
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
{| style="text-align: left; margin:auto;width: 100%;"  
 
|-
 
|-
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\Bigl\{16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
+
| style="text-align: center;" | <math>\omega _{1}(\vartheta ,\iota )  =  \frac{45\kappa \iota ^{\sigma }\hbox{sech}^{2}(\kappa (\vartheta{-\eta}))}{6859\Gamma (\sigma{+1)}}\Bigl\{16\left(19\sqrt{209}\kappa \left(4\kappa ^{2}+1\right)-165\right)</math><math>\tanh (\kappa (\vartheta{-\eta}))-152\sqrt{209}\zeta +\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))</math>
 
|-
 
|-
 
| style="text-align: center;" | <math>    \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\Bigr\}, </math>
 
| style="text-align: center;" | <math>    \left(209\sqrt{209}\zeta{+\tanh}(\kappa (\vartheta{-\eta}))\left(165\left(152\sqrt{209}\kappa ^{3}-121\right)\hbox{ sech}^{2}(\kappa (\vartheta{-\eta}))-76\sqrt{209}\kappa \left(224\kappa ^{2}+11\right)+18150\right)\right)\Bigr\}, </math>
Line 1,084: Line 1,077:
 
|}
 
|}
  
And so on. The behavior of a collection of approximate solutions obtained in Figure 2 and Table 2.
+
And so on. The behavior of a collection of approximate solutions obtained in [[#img-2|Figure 2]]  and [[#tab-2|Table 2]].
  
 
<div id='img-2'></div>
 
<div id='img-2'></div>
 
<div id='img-2'></div>
 
<div id='img-2'></div>
 
<div id='img-2'></div>
 
<div id='img-2f'></div>
 
 
<div id='img-2'></div>
 
<div id='img-2'></div>
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
{| class="wikitable" style="margin: 0em auto 0.1em auto;border-collapse: collapse;width:auto;"
 +
|-style="background:white;"
 +
|align="center" |
 +
{|style="margin: 0em auto 0.1em auto;width:auto;"  
 +
|+
 
|-
 
|-
|[[Image:Draft_Hagag_330916598-KS2-ex.png|232px|Exact solution of ω(ϑ,ι).]]
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-ex.png|232px]]
|[[Image:Draft_Hagag_330916598-KS2-app.png|232px|Approximate solution of ω(ϑ,ι).]]
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-app.png|232px]]
|- style="text-align: center; font-size: 75%;"
+
| (2) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>.
+
| (2) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{).}</math>
+
 
|-
 
|-
|[[Image:Draft_Hagag_330916598-KS2-error.png|232px|Absolute error at ι=1.]]
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(a) Exact solution of <math display="inline">\omega (\vartheta ,\iota )</math>
|[[Image:Draft_Hagag_330916598-KS2-ex+app.png|232px|Representation of the approximate solution with the exact solution.]]
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(b) Approximate solution of <math display="inline">\omega (\vartheta ,\iota{)}</math>
|- style="text-align: center; font-size: 75%;"
+
| (2) Absolute error at <math display="inline">\iota=1</math>.
+
| (2) Representation of the approximate solution with the exact solution.
+
 
|-
 
|-
|[[Image:Draft_Hagag_330916598-KS2(w0+w1+w2).png|232px|Comparative graphical simulation in the steady state.]]
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-error.png|232px]]
|[[Image:Draft_Hagag_330916598-KS2-alpha.png|236px|The solution of the power series approaches the exact solution.]]
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-ex+app.png|232px]]
|- style="text-align: center; font-size: 75%;"
+
|-
| (2) Comparative graphical simulation in the steady state.
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(c) Absolute error at <math display="inline">\iota=1</math>
| (f) The solution of the power series approaches the exact solution.
+
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(d) Representation of the approximate solution with the exact solution
|- style="text-align: center; font-size: 75%;"
+
|-
| colspan="2" | '''Figure 2:''' The behavior of a collection of approximate solutions obtained for case (2) at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
+
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2(w0+w1+w2).png|232px]]
 +
|style="text-align: center;padding:10px;"| [[Image:Draft_Hagag_330916598-KS2-alpha.png|236px]]
 +
|-
 +
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(e) Comparative graphical simulation in the steady state
 +
|style="text-align: center;font-size: 75%;padding-bottom:10px;"|(f) The solution of the power series approaches the exact solution
 +
|}
 +
|-
 +
| style="background:#efefef;text-align:left;padding:10px;font-size: 85%;"| '''Figure 2'''. The behavior of a collection of approximate solutions obtained for case (2) at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>
 
|}
 
|}
  
  
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
<div class="center" style="font-size: 75%;">'''Table 2'''. Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-40|40]]) obtained by TAM algorithm and NDM with exact,<br> and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math></div>
|+ style="font-size: 75%;" |Table. 2 Compare numerical calculations of analytical solutions <math>\omega \left(\vartheta ,\iota \right)</math> of Eq. ([[#eq-40|40]]) obtained by TAM algorithm and NDM with exact, and q-HATM solutions at <math>\sigma=1</math>, <math>\kappa=0.5\sqrt{\frac{11}{19}}</math>, <math>\zeta=5</math> <math>,\eta=-25</math>.
+
 
|-
+
<div id='tab-2'></div>
| <math display="inline">\vartheta </math>  
+
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"
| <math>\iota </math>
+
|-style="text-align:center"
| <math>\omega _{{\scriptscriptstyle TAM}}</math>
+
! <math display="inline">\vartheta </math> !!  <math>\iota </math> !!  <math>\omega _{{\scriptscriptstyle TAM}}</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}</math> !!  <math>\omega _{{\scriptscriptstyle HATM}}</math> [30] !!  <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math> !!  <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
| <math>\omega _{{\scriptscriptstyle NDM}}</math>
+
|-style="text-align:center"
| <math>\omega _{{\scriptscriptstyle HATM}}</math>[30]  
+
| <math>\omega _{{\scriptscriptstyle TAM}}(\sigma=0.9)</math>
+
| <math>\omega _{{\scriptscriptstyle NDM}}(\sigma=0.9)</math>
+
|-
+
 
| rowspan="5" | 1
 
| rowspan="5" | 1
 
| 0.2  
 
| 0.2  
Line 1,136: Line 1,123:
 
| 1.96076E08  
 
| 1.96076E08  
 
| 1.96076E08
 
| 1.96076E08
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 6.64967E08  
 
| 6.64967E08  
Line 1,143: Line 1,130:
 
| 1.38124E08  
 
| 1.38124E08  
 
| 1.38124E08
 
| 1.38124E08
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 2.89030E07  
 
| 2.89030E07  
Line 1,150: Line 1,137:
 
| 2.11347E07  
 
| 2.11347E07  
 
| 2.11347E07
 
| 2.11347E07
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 9.08435E07  
 
| 9.08435E07  
Line 1,157: Line 1,144:
 
| 8.09626E07  
 
| 8.09626E07  
 
| 8.09626E07
 
| 8.09626E07
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 2.42595E06  
 
| 2.42595E06  
Line 1,164: Line 1,151:
 
| 2.31168E06  
 
| 2.31168E06  
 
| 2.31168E06
 
| 2.31168E06
|-
+
|-style="text-align:center"
 
| rowspan="5" | 2
 
| rowspan="5" | 2
 
| 0.2  
 
| 0.2  
Line 1,172: Line 1,159:
 
| 9.16171E09  
 
| 9.16171E09  
 
| 9.16170E09
 
| 9.16170E09
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 3.10707E08  
 
| 3.10707E08  
Line 1,179: Line 1,166:
 
| 6.45387E09  
 
| 6.45387E09  
 
| 6.45387E09
 
| 6.45387E09
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 1.35050E07  
 
| 1.35050E07  
Line 1,186: Line 1,173:
 
| 9.87523E08  
 
| 9.87523E08  
 
| 9.87523E08
 
| 9.87523E08
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 4.24469E07  
 
| 4.24469E07  
Line 1,193: Line 1,180:
 
| 3.78300E07  
 
| 3.78300E07  
 
| 3.78300E07
 
| 3.78300E07
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 1.13353E06  
 
| 1.13353E06  
Line 1,200: Line 1,187:
 
| 1.08014E06  
 
| 1.08014E06  
 
| 1.08014E06
 
| 1.08014E06
|-
+
|-style="text-align:center"
 
| rowspan="5" | 3
 
| rowspan="5" | 3
 
| 0.2  
 
| 0.2  
Line 1,208: Line 1,195:
 
| 4.28083E09  
 
| 4.28083E09  
 
| 4.28083E09
 
| 4.28083E09
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 1.45179E08  
 
| 1.45179E08  
Line 1,215: Line 1,202:
 
| 3.01559E09  
 
| 3.01559E09  
 
| 3.01559E09
 
| 3.01559E09
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 6.31024E08  
 
| 6.31024E08  
Line 1,222: Line 1,209:
 
| 4.61423E08  
 
| 4.61423E08  
 
| 4.61423E08
 
| 4.61423E08
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 1.98334E07  
 
| 1.98334E07  
Line 1,229: Line 1,216:
 
| 1.76761E07  
 
| 1.76761E07  
 
| 1.76761E07
 
| 1.76761E07
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 5.29645E07  
 
| 5.29645E07  
Line 1,236: Line 1,223:
 
| 5.04697E07  
 
| 5.04697E07  
 
| 5.04697E07
 
| 5.04697E07
|-
+
|-style="text-align:center"
 
| rowspan="5" | 4
 
| rowspan="5" | 4
 
| 0.2  
 
| 0.2  
Line 1,244: Line 1,231:
 
| 2.00023E09  
 
| 2.00023E09  
 
| 2.00023E09
 
| 2.00023E09
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 6.78351E09  
 
| 6.78351E09  
Line 1,251: Line 1,238:
 
| 1.40904E09  
 
| 1.40904E09  
 
| 1.40904E09
 
| 1.40904E09
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 2.94847E08  
 
| 2.94847E08  
Line 1,258: Line 1,245:
 
| 2.15601E08  
 
| 2.15601E08  
 
| 2.15601E08
 
| 2.15601E08
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 9.26720E08  
 
| 9.26720E08  
Line 1,265: Line 1,252:
 
| 8.25922E08  
 
| 8.25922E08  
 
| 8.25922E08
 
| 8.25922E08
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 2.47478E07  
 
| 2.47478E07  
Line 1,272: Line 1,259:
 
| 2.35821E07  
 
| 2.35821E07  
 
| 2.35821E07
 
| 2.35821E07
|-
+
|-style="text-align:center"
 
| rowspan="5" | 5
 
| rowspan="5" | 5
 
| 0.2  
 
| 0.2  
Line 1,280: Line 1,267:
 
| 9.34614E10  
 
| 9.34614E10  
 
| 9.34609E10
 
| 9.34609E10
|-
+
|-style="text-align:center"
 
| 0.4  
 
| 0.4  
 
| 3.16960E09  
 
| 3.16960E09  
Line 1,287: Line 1,274:
 
| 6.58372E10  
 
| 6.58372E10  
 
| 6.58377E10
 
| 6.58377E10
|-
+
|-style="text-align:center"
 
| 0.6  
 
| 0.6  
 
| 1.37768E08  
 
| 1.37768E08  
Line 1,294: Line 1,281:
 
| 1.00740E08  
 
| 1.00740E08  
 
| 1.00740E08
 
| 1.00740E08
|-
+
|-style="text-align:center"
 
| 0.8  
 
| 0.8  
 
| 4.33012E08  
 
| 4.33012E08  
Line 1,301: Line 1,288:
 
| 3.85914E08  
 
| 3.85914E08  
 
| 3.85914E08
 
| 3.85914E08
|-
+
|-style="text-align:center"
 
| 1  
 
| 1  
 
| 1.15635E07  
 
| 1.15635E07  
Line 1,308: Line 1,295:
 
| 1.10188E07  
 
| 1.10188E07  
 
| 1.10188E07
 
| 1.10188E07
 
 
|}
 
|}
  
==5 Numerical results and discussion==
+
==5. Numerical results and discussion==
  
In this section, we provide the numerical solution to the Kuramoto-Sivashinsky equation for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\omega _{n}</math> and fractional order <math display="inline">\sigma </math> using two methods: TAM and NDM. In Example 1, Fig. 1(a,b and c), we show the surfaces of the precise solution, the analytical solution derived using the TAM approach, and the absolute error for Eq. (20). Fig. 1(d) shows the <math display="inline">\omega _{n}</math>-curves for the FKS equation at <math display="inline">\iota=0.1</math> and shows their convergence. In addition, in Fig. 1(e), we examined the precise solution and TAM for various values of n at <math display="inline">\iota=0.1</math>, and we noticed that as n increases, the convergence of the two solutions (for negative x values) increases. As demonstrated in Fig. 1(f), values less than one increase the convergence between the exact solution and TAM. In Fig. 2, we plotted the surfaces of both the exact solution and the TAM solution, as well as the absolute error between them, and compared them as in the first example, obtaining the same behaviour except in Fig. 2 (f), where we discovered that values close to one provide a better approximation to the exact solution. For Examples 1 and 2, numerical results for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\sigma=1,0.9</math> were given in Tables1 and 2 using the methods TAM and NDM, and the conclusions were reasonably similar to those in [30], but TAM method is better in convergence with the HATM method.
+
In this section, we provide the numerical solution to the Kuramoto-Sivashinsky equation for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\omega _{n}</math> and fractional order <math display="inline">\sigma </math> using two methods: TAM and NDM. In Example 1, [[#img-1|Figure 1]]  (a,b and c), we show the surfaces of the precise solution, the analytical solution derived using the TAM approach, and the absolute error for Eq. (20). [[#img-1|Figure 1]] (d) shows the <math display="inline">\omega _{n}</math>-curves for the FKS equation at <math display="inline">\iota=0.1</math> and shows their convergence. In addition, in [[#img-1|Figure 1]] (e), we examined the precise solution and TAM for various values of n at <math display="inline">\iota=0.1</math>, and we noticed that as n increases, the convergence of the two solutions (for negative x values) increases. As demonstrated in [[#img-1|Figure 1]] (f), values less than one increase the convergence between the exact solution and TAM. In [[#img-2|Figure 2]], we plotted the surfaces of both the exact solution and the TAM solution, as well as the absolute error between them, and compared them as in the first example, obtaining the same behaviour except in [[#img-2|Figure 2]] (f), where we discovered that values close to one provide a better approximation to the exact solution. For Examples 1 and 2, numerical results for various values of <math display="inline">\vartheta </math>, <math display="inline">\iota </math>, <math display="inline">\sigma=1,0.9</math> were given in Tables1 and 2 using the methods TAM and NDM, and the conclusions were reasonably similar to those in [30], but TAM method is better in convergence with the HATM method.
  
==6 Conclusion==
+
==6. Conclusion==
  
 
In this study, we successfully employed TAM and NDM to resolve the fractional Kuramoto-Sivashinsky problem. We give the numerical analysis of the FKS equation for two distinct initial conditions in the current analysis. The current techniques provide the parameter h1 which helps to control the convergence of the results obtained. The envisioned schemes manipulate and regulate the found solutions, which fast tend to the exact outcomes in a short sufficient area. According to the obtained results, TAM and NDM are capable of lowering work and evaluation time when compared to existing numerical algorithms while retaining high accuracy of results. As a result, we can infer that the used approaches are very systematic and extremely strong in analyzing fractional-order mathematical models.
 
In this study, we successfully employed TAM and NDM to resolve the fractional Kuramoto-Sivashinsky problem. We give the numerical analysis of the FKS equation for two distinct initial conditions in the current analysis. The current techniques provide the parameter h1 which helps to control the convergence of the results obtained. The envisioned schemes manipulate and regulate the found solutions, which fast tend to the exact outcomes in a short sufficient area. According to the obtained results, TAM and NDM are capable of lowering work and evaluation time when compared to existing numerical algorithms while retaining high accuracy of results. As a result, we can infer that the used approaches are very systematic and extremely strong in analyzing fractional-order mathematical models.
Line 1,321: Line 1,307:
 
'''Conflict of Interest:''' The author declare that there is no Conflict of Interest.  
 
'''Conflict of Interest:''' The author declare that there is no Conflict of Interest.  
  
'''Acknowledgments:''' Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R215), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
+
==Acknowledgments==
 +
 
 +
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R522), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
  
===BIBLIOGRAPHY===
+
==References==
 +
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
  
 
<div id="cite-1"></div>
 
<div id="cite-1"></div>
'''[1]''' Miller, K.S. and Ross, B., 1993. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc., New York/Singapore.
+
[1] Miller K.S., Ross B. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc., New York/Singapore, 1993.
  
 
<div id="cite-2"></div>
 
<div id="cite-2"></div>
'''[2]''' Podlubny, I., 1999. Fractional differential equations, mathematics in science and engineering, Academic Press, San Diego.
+
[2] Podlubny I. Fractional differential equations, mathematics in science and engineering. Academic Press, San Diego, 1999.
  
 
<div id="cite-3"></div>
 
<div id="cite-3"></div>
'''[3]''' Butzer, P.L. and Westphal, U., 2000. An introduction to fractional calculus. In: Hilfer, R., Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore City (pp. 1-85).
+
[3] Almuneef A., Hagag A.E. Approximate solution of the fractional differential equation via the natural decomposition method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 42, 1-15, 2023.
  
 
<div id="cite-4"></div>
 
<div id="cite-4"></div>
'''[4]''' Wang, Z., Huang, X., Li, Y.X. and Song, X.N., 2013. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22(1), p.010504.
+
[4] Wang Z., Huang X., Li Y.X., Song X.N. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22(1), 010504, 2013.
  
 
<div id="cite-5"></div>
 
<div id="cite-5"></div>
'''[5]''' Oldham, K. and Spanier, J., 1974. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, Academic Press, New York.
+
[5] Almuneef A., Hagag, A.E. Analytical solution to fractional differential equation arising in thermodynamics. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 49, 1-16, 2023.
  
 
<div id="cite-6"></div>
 
<div id="cite-6"></div>
'''[6]''' Hilfer, R. ed., 2000. Applications of fractional calculus in physics. World scientific.https://api.semanticscholar.org/CorpusID:117406670.
+
[6] Hilfer R. (ed.). Applications of fractional calculus in physics. World scientific, Universität Mainz & Universität Stuttgart, Germany, pp. 472, 2000. . https://api.semanticscholar.org/CorpusID:117406670.
  
 
<div id="cite-7"></div>
 
<div id="cite-7"></div>
'''[7]''' Torvik, P.J. and Bagley, R.L., 1984. On the appearance of the fractional derivative in the behavior of real materials, vol. 51, no. 2, pp. 294-298.
+
[7] Alqahtani Z., Hagag A.E. A new semi-analytical solution of compound KdV-Burgers equation of fractional order. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 38, 1-16, 2023.
  
 
<div id="cite-8"></div>
 
<div id="cite-8"></div>
'''[8]''' Alqahtani, Z. and Hagag, A.E., 2023. A fractional numerical study on a plant disease model with replanting and preventive treatment. Métodos numéricos para cálculo y diseño en ingeniería: Revista internacional, 39(3), pp.1-21.
+
[8] Alqahtani, Z. and Hagag, A.E. A fractional numerical study on a plant disease model with replanting and preventive treatment. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(3), 27, 1-21, 2023.
  
 
<div id="cite-9"></div>
 
<div id="cite-9"></div>
'''[9]''' Li, C., Chen, G. and Zhao, S., 2004. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Latin American applied research, 34(1), pp.65-68.
+
[9] Li C., Chen G., Zhao S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Latin American applied research, 34(1):65-68, 2004.
  
 
<div id="cite-10"></div>
 
<div id="cite-10"></div>
'''[10]''' Ellahi, R., Alamri, S.Z., Basit, A. and Majeed, A., 2018. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4), pp.476-482.
+
[10] Ellahi R., Alamri S.Z., Basit A., Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4):476-482, 2018.
  
 
<div id="cite-11"></div>
 
<div id="cite-11"></div>
'''[11]''' Rademacher, J.D. and Wittenberg, R.W., 2006. Viscous shocks in the destabilized Kuramoto-Sivashinsky equation, J. Comput. Nonlinear Dynam., 1(4):336-347.
+
[11] Rademacher J.D., Wittenberg R.W. Viscous shocks in the destabilized Kuramoto-Sivashinsky equation. J. Comput. Nonlinear Dynam., 1(4):336-347, 2006.
  
 
<div id="cite-12"></div>
 
<div id="cite-12"></div>
'''[12]''' Zeeshan, A., Hussain, F., Ellahi, R. and Vafai, K., 2019. A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. Journal of Molecular Liquids, 286, p.110898.
+
[12] Zeeshan A., Hussain F., Ellahi R., Vafai K. A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. Journal of Molecular Liquids, 286, 110898, 2019.
  
 
<div id="cite-13"></div>
 
<div id="cite-13"></div>
'''[13]''' Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R., 2019. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080.
+
[13] Khan A.A., Bukhari S.R., Marin, M., Ellahi R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080, 2019.
  
 
<div id="cite-14"></div>
 
<div id="cite-14"></div>
'''[14]''' Prakash, J., Tripathi, D., Tiwari, A.K., Sait, S.M. and Ellahi, R., 2019. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry, 11(7), p.868.
+
[14] Prakash J., Tripathi D., Tiwari A.K., Sait S.M., Ellahi R. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry, 11(7):868, 2019.
  
 
<div id="cite-15"></div>
 
<div id="cite-15"></div>
'''[15]''' Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M., 2019. Study of heat and mass transfer in the EyringPowell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research, 50(16):1539-1560.
+
[15] Riaz A., Ellahi R., Bhatti M.M., Marin M. Study of heat and mass transfer in the EyringPowell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research, 50(16):1539-1560, 2019.
  
 
<div id="cite-16"></div>
 
<div id="cite-16"></div>
'''[16]''' Conte, R., 2003. Exact solutions of nonlinear partial differential equations by singularity analysis. In Direct and Inverse Methods in Nonlinear Evolution Equations: Lectures Given at the CIME Summer School Held in Cetraro, Italy, September 5-12, 1999 (pp. 1-83). Berlin, Heidelberg: Springer Berlin Heidelberg.
+
[16] Conte R. Exact solutions of nonlinear partial differential equations by singularity analysis. In Direct and Inverse Methods in Nonlinear Evolution Equations. Lecture Notes in Physics, vol 632, Springer, Berlin, Heidelberg, 2003.
  
 
<div id="cite-17"></div>
 
<div id="cite-17"></div>
'''[17]''' Kuramoto, Y. and Tsuzuki, T., 1976. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progress of theoretical physics, 55(2), pp.356-369.
+
[17] Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progress of theoretical physics, 55(2):356-369, 1976.
  
 
<div id="cite-18"></div>
 
<div id="cite-18"></div>
'''[18]''' Tadmor, E., 1986. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM Journal on Mathematical analysis, 17(4), pp.884-893.
+
[18] Tadmor E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM Journal on Mathematical analysis, 17(4):884-893, 1986.
  
 
<div id="cite-19"></div>
 
<div id="cite-19"></div>
'''[19]''' Sivashinsky, G.I., 1983. Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 15(1), pp.179-199.
+
[19] Sivashinsky G.I. Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 15(1):179-199, 1983.
  
 
<div id="cite-20"></div>
 
<div id="cite-20"></div>
'''[20]''' Hooper, A.P. and Grimshaw, R., 1985. Nonlinear instability at the interface between two viscous fluids. The Physics of fluids, 28(1), pp.37-45.
+
[20] Hooper A.P., Grimshaw R. Nonlinear instability at the interface between two viscous fluids. The Physics of Fluids, 28(1):37-45, 1985.
  
 
<div id="cite-21"></div>
 
<div id="cite-21"></div>
'''[21]''' Akrivis, G. and Smyrlis, Y.S., 2004. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Applied numerical mathematics, 51(2-3), pp.151-169.
+
[21] Akrivis G., Smyrlis Y.S. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Applied Numerical Mathematics, 51(2-3):151-169, 2004.
  
 
<div id="cite-22"></div>
 
<div id="cite-22"></div>
'''[22]''' Akrivis, G.D., 1992. Finite difference discretization of the KuramotoSivashinsky equation. Numerische Mathematik, 63, pp.1-11.
+
[22] Akrivis G.D. Finite difference discretization of the KuramotoSivashinsky equation. Numerische Mathematik, 63:1-11, 1992.
  
 
<div id="cite-23"></div>
 
<div id="cite-23"></div>
'''[23]''' Ersoy, O. and Dag, I., 2016. The Exponential Cubic B-Spline Collocation Method for the Kuramoto-Sivashinsky Equation. Filomat, 30(3), pp.853-861.
+
[23] Ersoy O.Dag I. The exponential cubic b-Spline collocation method for the Kuramoto-Sivashinsky equation. Filomat, 30(3):853-861, 2016.
  
 
<div id="cite-24"></div>
 
<div id="cite-24"></div>
'''[24]''' Rezazadeh, H. and Ziabarya, B.P., 2016. Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Computational Research Progress in Applied Science & Engineering, 2(3), pp.106- 109.
+
[24] Rezazadeh H., Ziabarya B.P. Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Computational Research Progress in Applied Science & Engineering, 2(3):106- 109, 2016.
  
 
<div id="cite-25"></div>
 
<div id="cite-25"></div>
'''[25]''' Manaa, S.A., Easif, F.H. and Yousif, M.A., 2014. Adomian Decomposition Method for Solving the Kuramoto-Sivashinsky Equation, IOSR Journal of Mathematics, 10:08-12.
+
[25] Manaa S.A., Easif F.H., Yousif M.A. Adomian decomposition method for Sslving the Kuramoto-Sivashinsky equation. IOSR Journal of Mathematics, 10:08-12, 2014.
  
 
<div id="cite-26"></div>
 
<div id="cite-26"></div>
'''[26]''' Kulkarni, S., Takale, K. and Gaikwad, S., 2020. Numerical solution of time fractional Kuramoto-Sivashinsky equation by Adomian decomposition method and applications. Malaya Journal of Matematik (MJM), 8(3, 2020), pp.1078-1084.
+
[26] Kulkarni S., Takale K., Gaikwad S. Numerical solution of time fractional Kuramoto-Sivashinsky equation by Adomian decomposition method and applications. Malaya Journal of Matematik (MJM), 8(3):1078-1084, 2020.
  
 
<div id="cite-27"></div>
 
<div id="cite-27"></div>
'''[27]''' Okeke, J.E., Okoli, O.C., Obi, T.A. and Ujumadu, R.N., 2022. New Exact Solution of a Class of Kuramoto Sivashinsky (KS) Equations using Double Reduction Theory. 7:477-487.
+
[27] Okeke J.E., Okoli O.C., Obi T.A., Ujumadu R.N. New exact solution of a class of Kuramoto Sivashinsky (KS) equations using double reduction theory. International Journal of Innovative Science and Research Technology, 7(3):477-487, 2022.
  
 
<div id="cite-28"></div>
 
<div id="cite-28"></div>
'''[28]''' Kilicman, A. and Silambarasan, R., 2018. Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry, 10(10), p.527.
+
[28] Kilicman A., Silambarasan R. Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry, 10(10):527, 2018.
  
 
<div id="cite-29"></div>
 
<div id="cite-29"></div>
'''[29]''' Noor, M.A., Mohyud-Din, S.T. and Waheed, A., 2009. Exp-function method for solving KuramotoSivashinsky and Boussinesq equations. Journal of Applied Mathematics and Computing, 29, pp.1-13.
+
[29] Noor M.A., Mohyud-Din S.T., Waheed A. Exp-function method for solving KuramotoSivashinsky and Boussinesq equations. Journal of Applied Mathematics and Computing, 29:1-13, 2009.
  
 
<div id="cite-30"></div>
 
<div id="cite-30"></div>
'''[30]''' Veeresha, P. and Prakasha, D.G., 2021. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. International Journal of Applied and Computational Mathematics, 7(2), p.33.
+
[30] Veeresha P., Prakasha D.G. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. International Journal of Applied and Computational Mathematics, 7(2):33, 2021.
  
 
<div id="cite-31"></div>
 
<div id="cite-31"></div>
'''[31]''' Abbasbandy, S., 2008. Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dynamics, 52, pp.35-40.
+
[31] Abbasbandy S. Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dynamics, 52:35-40, 2008.
  
 
<div id="cite-32"></div>
 
<div id="cite-32"></div>
'''[32]''' Kurulay, M., Secer, A. and Akinlar, M.A., 2013. A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method. Applied Mathematics & Information Sciences, 7(1), pp.267-271.
+
[32] Kurulay M., Secer A., Akinlar M.A. A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method. Applied Mathematics & Information Sciences, 7(1):267-271, 2013.
  
 
<div id="cite-33"></div>
 
<div id="cite-33"></div>
'''[33]''' Shah, R., Khan, H., Baleanu, D., Kumam, P. and Arif, M., 2020. A semianalytical method to solve family of Kuramoto-Sivashinsky equations. Journal of Taibah University for Science, 14(1), pp.402-411.
+
[33] Shah R., Khan H., Baleanu D., Kumam P., Arif M. A semianalytical method to solve family of Kuramoto-Sivashinsky equations. Journal of Taibah University for Science, 14(1):402-411, 2020.
  
 
<div id="cite-34"></div>
 
<div id="cite-34"></div>
'''[34]''' Acan, O. and Keskin, Y., 2015, March. Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method. In AIP Conference Proceedings (Vol. 1648, No. 1, p. 470003). AIP Publishing LLC.
+
[34] Acan O., Keskin Y. Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method. In AIP Conference Proceedings, 1648(1):470003, AIP Publishing LLC, 2015.
  
 
<div id="cite-35"></div>
 
<div id="cite-35"></div>
'''[35]''' Temimi, H. and Ansari, A.R., 2011. A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2), pp.203-210.
+
[35] Temimi H.Ansari A.R. A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2):203-210, 2011.
  
 
<div id="cite-36"></div>
 
<div id="cite-36"></div>
'''[36]''' Al-Hanaya, A., Alotaibi, M., Shqair, M. and Hagag, A.E., 2023. MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 8(12), pp.29440-29452.
+
[36] Al-Hanaya A., Alotaibi M., Shqair M., Hagag A.E. MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 8(12):29440-29452, 2023.
  
 
<div id="cite-37"></div>
 
<div id="cite-37"></div>
'''[37]''' Rawashdeh, M.S., 2017. The fractional natural decomposition method: theories and applications. Mathematical Methods in the Applied Sciences, 40(7), pp.2362-2376.
+
[37] Rawashdeh M.S. The fractional natural decomposition method: theories and applications. Mathematical Methods in the Applied Sciences, 40(7):2362-2376, 2017.
  
 
<div id="cite-38"></div>
 
<div id="cite-38"></div>
'''[38]''' Liouville, J., 1832. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. 9:373-391.
+
[38] Liouville J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. Journal de l'École Polytechnique, 13(21):1-69, 1832.
  
 
<div id="cite-39"></div>
 
<div id="cite-39"></div>
'''[39]''' Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., 2006. Theory and applications of fractional differential equations, elsevier, 204:1-523.
+
[39] Kilbas A.A., Srivastava H.M., Trujillo J.J. (eds.). Theory and applications of fractional differential equations. Elsevier, 204:1-523, 2006.
  
 
<div id="cite-40"></div>
 
<div id="cite-40"></div>
'''[40]''' Khan, Z.H. and Khan, W.A., 2008. N-transform properties and applications. NUST journal of engineering sciences, 1(1), pp.127-133.
+
[40] Khan Z.H., Khan W.A. N-transform properties and applications. NUST Journal of Engineering Sciences, 1(1):127-133, 2008.
  
 
<div id="cite-41"></div>
 
<div id="cite-41"></div>
'''[41]''' Belgacem, F.B.M. and Silambarasan, R., 2012, November. Advances in the natural transform. In AIP conference proceedings (Vol. 1493, No. 1, pp. 106-110). American Institute of Physics.
+
[41] Belgacem F.B.M., Silambarasan R. Advances in the natural transform. In AIP Conference Proceedings, 1493(1):106-110, American Institute of Physics, 2012.

Latest revision as of 12:25, 5 March 2024

Abstract

In this study, we examine the Kuramoto-Sivashinsky equation which is a nonlinear model that describes several physical and chemical events arising in fluid flow. The approximate analytical solution for the fractional KS (FKS) problem is calculated using the Temimi-Ansari method (TAM) and the natural decomposition method (NDM). The projected procedure (NDM) combines the adomian decomposition method with the natural transform. Each technique can deal with nonlinear terms without making any assumptions. The methodologies under consideration provide -curves that display the convergence window of the power series solution that approaches the exact solution. We explore two distinct examples to confirm the efficiency and applicability of the proposed strategies. The acquired outcomes are compared numerically with the q-homotopy analysis transform method (q-HATM). The numerical investigation is carried out to validate the precision and dependability of the approaches under consideration. Additionally, the nature of the outcomes gained has been displayed in a different order. The obtained results show that the proposed techniques are highly efficient and simple to use to analyze the behavior of other nonlinear models.

Keywords: Kuramoto-Sivashinsky equation, Laplace transform, natural decomposition method (NDM), Temimi-Ansari method (TAM)

1. Introduction

Since nearly three centuries ago, fractional calculus has always been considered a purely mathematical problem [1-3]. Despite having a long history, it was not utilized in both engineering and physics for an extended period of time. In recent decades, fractional calculus has attracted growing interest from a practical perspective among scientists [4-6]. In the disciplines of continuous-time simulation, numerous experts have noted that fractional derivatives are useful for describing linear viscoelasticity, rheology, acoustics, polymerization chemistry, etc. In addition, fractional derivatives have proven to be a useful instrument for describing the memory and inherited properties of diverse substances and procedures. The mathematical principles and practical implications of these operators are currently well-developed, and their applicability to the fields of science and engineering is viewed as a topic of interest. In physics, chemistry, and engineering [7-8], fractional derivatives have appeared in equations used to characterize dynamical processes; consequently, fractional-order differential equations (FDEs) are the subject of an increasing number of studies.

Gregory I. Sivashinsky measured the situation of a laminar flaming front in 1977. When Yoshiki Kuramoto simultaneously designed diffusion-induced chaos in a three-dimensional simulation of the Belousov-Zabotinskii transformation [10-13], he created a certain problem. The result of their collaboration is known as the Kuramoto-Sivashinsky (KS) model. This system describes the variations in the orientation of the combustion front, the flow of a liquid down a circular surface, and a dynamically specific oscillating of chemical compounds in a fluid that is homogeneous [14-16]. It creates chaotic behavior and necessitates a result resembling waves traveling in a finite space domain without changing scale. That has numerous implementations in a variety of concepts, such as response diffusion systems [17], thin film hydrodynamics [18], and front burn instability [19], as well as lengthy waves on functionality in a few noxious fluids [20].

The general Kuramoto-Sivashinsky equation (fractional Kuramoto-Sivashisky equation) is:

(1)

When and , the equation proceeds to the Kuramoto-Sivashinsky equation [9], which was developed by Kuramoto and Sivashinsky during their investigation of phase turbulence in the Belousov-Zhabotinsky reaction. The Kuramoto-Sivashinsky equation is a fourth-order nonlinear partial differential equation that plays a significant role in the study of fluid dynamics, combustion, and other areas of physics and mathematics.

Due to its wide range of applications, it has garnered a great deal of interest in the search for analytical and numerical solutions. Thus, the solutions of the KS equation have been accomplished through a variety of techniques, such as the finite difference method [21-22], the Exponential Cubic BSpline Collocation Method [23], the Subequation Method [24], the Adomian Decomposition Method [25-26], the Double Reduction Theory [27], the Modified Kudrayshov Method [28], the Expfunction Method [29], the q-homotopy analysis transform method [30], the homotopy analysis method [31-32], a semianalytical method [33], the Reduced Differential Transform Method [34], and numerous other techniques.

In this current research, two methods for solving the fractional Kuramoto-Sivashisky equation were implemented. The first method is a semi-analytical iterative method. Temimi and Ansari have proposed this method, namely the TAM. They have lately presented this method to solve linear and nonlinear ODEs and PDEs [35-36]. Recent applications of this iterative method have yielded exact and approximate solutions to several problems. As opposed to the VIM, the TAM doesn't require any restricted hypotheses for non-linear terms, such as the ADM, the prerequisite for the referred to as Adomian polynomial, thereby averting extensive computational work and requiring no additional parameters. In addition, it avoided homotopy construction and the solution of the corresponding equations for algebra, as in HPM.

The second method is the fractional natural decomposition method (FNDM) Rawashdeh and Maitama [37] propose this method using ADM and natural transform (NT). The method under consideration is a combination of an effective system and a natural transform, which may decrease massive computation while increasing reliability. In addition, the contemplated scheme necessitates no linearization, discretization, and transforming of partial to ordinary differential equations, or physical parameter assumptions. This allows nonlinear and complex issues to be solved with a straightforward procedure. Numerous authors have utilized it to analyze and discover solutions to numerous real-world problems.

2. Preliminaries to FC

Here, the fundamental definition of Natural transform (NT) and FC are presented [38-39].

Definition 1

The Riemann-Liouville integral of a function having fractional order is presented as follows

(2)

Definition 2

The Caputo fractional order derivative of is presented as

(3)

Definition 3

The natural transform of is defined as [40-41]

(4)

where and are the transform variables.

The inverse natural transform of a function is defined by

(5)

where and are the natural transform variables and is a real constant and the integral is taken along in the complex plane .

Definition 4

Natural Transform of nth derivative If is the nth derivative of function is given by,

(6)

3. The fundamental ideas of two iterative approaches

An algorithm known as the iterative technique produces a series of improved approximations to a set of issues. When the appropriate sequence is converging at some specified initial approximations, the iterative approach produces an approximate solution that converges to the exact solution.

3.1 Basic Procedure for the fractional TAM

The general nonlinear fractional partial differential equation is a mathematical equation that may be used to represent the essential concepts of the suggested technique as

(7)

combined with the independent variable , dependent variable , unknown function and boundary conditions

where is the Caputo fractional derivative, is representing the generic differential operators, the continuous functions are shown in and the boundary operator is represented by . The main request made here is for the differential operator , which is general. However, if necessary, we can combine a number of linear components with nonlinear terms.

The following describes how the suggested method operates. The starting condition is obtained by removing the nonlinear portion as

(8)

By resolving the following issues, the next approximations of solutions are produced:

(9)

As a result, we have a simple iterative process for solving a group of issues

(10)

In this technique, it is crucial to remember that any of the is individually a solution to the problem (Eq. (7)). We confirm that these iterative stages are simple to carry out and that each solution is an improvement over the previous iteration. The convergence of solutions must be confirmed by comparing successive solutions to the prior iteration. The analytical solution and the exact solution to the issue (Eq. (7)) converge as more iterations are made. This allows for the development of an adequate analytical solution with the exact solution as

(11)

3.2 Basic Procedure for the fractional NDM

The following examples demonstrate how the recommended approach is based on the theory and method for solving fractional nonlinear partial differential equations:

(12)

with the initial condition

(13)

where the Caputo operator of is denoted by , the linear function is denoted by , the non-linear function is denoted by and the source term is denoted by . Applying the NT to Eq. (12) and employing definition 5, we obtain

(14)

Applying the inverse NT to the previous equation, we get

(15)

exists based on the provided initial condition and nonhomogeneous term. Let's suppose that an infinite series solution has the form

(16)

where denotes the nonlinear term of , then we get

(17)

Ultimately, the analytical solutions are presented in the following form:

(18)

4. Numerical examples of the KS models

This section demonstrates how the iterative methods TAM and NDM will be used to solve the fractional Kuramoto-Sivashinsky problem.

4.1 Example 1

The following form can be used to represent the fractional Kuramoto-Sivashinsky equation

(19)

with initial condition

(20)

The two iterative approaches that have been suggested will be used to resolve this issue.

Solving the Example 1 by Tthe AM

By using the fractional TAM by first formulating the problem as

(21)

The first problem that has to be resolved is

(22)

The solution of Eq. (22) may be obtained by using a straightforward procedure, as shown below

(23)

As a result, using the fundamental characteristics of definition (2), we can derive the primary iteration as

(24)

It is possible to compute the next iteration, and we have

(25)

Then, by integrating both sides of Eq. (25) and using the fundamental characteristics of definition (2), we obtain

(26)

The next iteration appears as

(27)

The following iteration is calculable and is provided as

(28)

Then, by integrating both sides of Eq. (28) and using the fundamental characteristics of definition (2), we obtain

(29)

Each repetition of the represents a rough solution to Eq. (19) in accordance with Eq. (11), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as

(30)

Here are some details on the exact solution to which the preceding approximate solution leads [30],

(31)

Solving the Example 1 by the DM

Eq. (19) may be simplified by applying NT to it

(32)

The definition of the non-linear operator is

(33)

When Eq. (33) is made simpler, we obtain

(34)

Eq. (34) is transformed by inverse NT to give us

(35)

We may calculate the terms of the series by using to solve the previous equation

(36)

Using the NDM procedure, we get

(37)
(38)
(39)

And so on. The behavior of a collection of approximate solutions obtained in Figure 1 and Table 1.

Exact solution of ω(ϑ,ι). Approximate solution of ω(ϑ,ι).
(a) Exact solution of (b) Approximate solution of
Absolute error at ι=1. Representation of the approximate solution with the exact solution.
(c) Absolute error at (d) Representation of the approximate solution with the exact solution
Draft Hagag 330916598-KS1(w0+w1+w2).png Draft Hagag 330916598-KS1-alpha.png
(e) Comparative graphical simulation in the steady state (f) The solution of the power series approaches the exact solution
Figure 1. The behavior of a collection of approximate solutions obtained for case (1) at , ,


Table 1. Compare numerical calculations of analytical solutions of Eq. (19) obtained by TAM algorithm and NDM with exact,
and q-HATM solutions at , ,
[30]
1 0.2 2.80424E08 2.48734E09 2.80432E08 2.14599E06 2.67151E06
0.4 4.95147E07 8.62662E08 4.95160E07 2.08915E06 5.50393E06
0.6 2.78302E06 7.13064E07 2.78309E06 2.7345E06 7.47041E06
0.8 9.82780E06 3.28572E06 9.82802E06 1.67288E05 5.46055E06
1 2.69887E05 1.10169E05 2.69893E05 4.67056E05 6.17336E06
2 0.2 1.78570E08 1.58980E09 1.78573E08 1.35933E06 1.69305E06
0.4 3.15442E07 5.51676E08 3.15448E07 1.32002E06 3.48849E06
0.6 1.77395E06 4.56307E07 1.77397E06 1.75053E06 4.72985E06
0.8 6.26867E06 2.10428E06 6.26876E06 1.06596E05 3.43118E06
1 1.72293E05 7.06240E06 1.72296E05 2.97593E05 4.02031E06
3 0.2 1.13535E08 1.01377E09 1.13536E08 8.60648E07 1.07236E06
0.4 2.00629E07 3.51942E-08 2.00631E07 8.34089E07 2.20978E06
0.6 1.12877E06 2.91252E07 1.12878E06 1.11763E06 2.99357E06
0.8 3.99093E06 1.34397E06 1.99096E06 6.78091E06 2.15839E06
1 1.09764E05 4.51409E06 1.09765E06 1.89302E05 2.60114E06
4 0.2 7.20971E09 6.45271E-10 7.20976E09 5.44714E07 6.78920E07
0.4 1.27440E07 2.24089E08 1.27441E07 5.27063E07 1.39914E06
0.6 7.17241E07 1.85523E07 7.17246E07 7.12053E07 1.89411E06
0.8 2.53701E06 8.56512E07 2.53702E06 4.30781E06 1.35897E06
1 6.98135E06 2.87858E06 6.98138E06 1.20257E05 1.67448E06
5 0.2 4.57386E09 4.10120E-10 4.57388E09 3.44656E07 4.29680E07
0.4 8.08663E08 1.42464E08 8.08667E08 3.33064E07 8.85550E07
0.6 4.55248E07 1.17984E07 4.55249E07 4.52901E07 1.19818E06
0.8 1.61084E06 5.44920E07 3.61084E07 2.73379E06 8.56270E07
1 4.43460E06 1.83226E06 4.43462E07 7.63155E06 1.07374E06

4.2 Example 2

The following form can be used to represent the fractional Kuramoto-Sivashinsky equation

(40)

with initial condition

(41)

The two iterative approaches that have been suggested will be used to resolve this issue.

Solving the Example 2 by the AM:

By using the fractional TAM by first formulating the problem as

(42)

The first problem that has to be resolved is

(43)

The solution of Eq. (43) may be obtained by using a straightforward procedure, as shown below

(44)

As a result, using the fundamental characteristics of definition (2), we can derive the primary iteration as

(45)

It is possible to compute the next iteration, and we have

(46)

Then, by integrating both sides of Eq. (46) and using the fundamental characteristics of definition (2), we obtain

(47)

The next iteration appears as

(48)

The following iteration is calculable and is provided as

(49)

Then, by integrating both sides of Eq. (49) and using the fundamental characteristics of definition (2), we obtain

(50)

Each repetition of the represents a rough solution to Eq. (40) in accordance with Eq. (11), which states that. The analytical solution gets closer to the exact solution as the number of iterations rises. By continuing with this process, we are able to create the following sequence of analytical solution templates as

(51)

Here are some details on the exact solution to which the preceding approximate solution leads [30],

(52)

Solving Example 2 by the NDM:

Eq. (40) may be simplified by applying NT to it

(53)

The definition of the non-linear operator is

(54)

When Eq. (54) is made simpler, we obtain

(55)

Eq. (55) is transformed by inverse NT to give us

(56)

We may calculate the terms of the series by using to solve the previous equation

(57)

Using the NDM procedure, we get

(58)
(59)
(60)

And so on. The behavior of a collection of approximate solutions obtained in Figure 2 and Table 2.

Draft Hagag 330916598-KS2-ex.png Draft Hagag 330916598-KS2-app.png
(a) Exact solution of (b) Approximate solution of
Draft Hagag 330916598-KS2-error.png Draft Hagag 330916598-KS2-ex+app.png
(c) Absolute error at (d) Representation of the approximate solution with the exact solution
Draft Hagag 330916598-KS2(w0+w1+w2).png Draft Hagag 330916598-KS2-alpha.png
(e) Comparative graphical simulation in the steady state (f) The solution of the power series approaches the exact solution
Figure 2. The behavior of a collection of approximate solutions obtained for case (2) at , ,


Table 2. Compare numerical calculations of analytical solutions of Eq. (40) obtained by TAM algorithm and NDM with exact,
and q-HATM solutions at , ,
[30]
1 0.2 6.63085E09 6.63085E09 2.80432E08 1.96076E08 1.96076E08
0.4 6.64967E08 6.64967E08 4.95160E07 1.38124E08 1.38124E08
0.6 2.89030E07 2.89030E07 2.78309E06 2.11347E07 2.11347E07
0.8 9.08435E07 9.08435E07 9.82802E06 8.09626E07 8.09626E07
1 2.42595E06 2.42595E06 2.69893E05 2.31168E06 2.31168E06
2 0.2 3.09828E09 3.09828E09 1.78573E08 9.16171E09 9.16170E09
0.4 3.10707E08 3.10708E08 3.15448E07 6.45387E09 6.45387E09
0.6 1.35050E07 1.35050E07 1.77397E06 9.87523E08 9.87523E08
0.8 4.24469E07 4.24469E07 6.26876E06 3.78300E07 3.78300E07
1 1.13353E06 1.13353E06 1.72296E05 1.08014E06 1.08014E06
3 0.2 1.44768E09 1.44768E09 1.13536E08 4.28083E09 4.28083E09
0.4 1.45179E08 1.45179E08 2.00631E07 3.01559E09 3.01559E09
0.6 6.31024E08 6.31024E08 1.12878E06 4.61423E08 4.61423E08
0.8 1.98334E07 1.98334E07 1.99096E06 1.76761E07 1.76761E07
1 5.29645E07 5.29645E07 1.09765E06 5.04697E07 5.04697E07
4 0.2 6.76425E10 6.76430E10 7.20976E09 2.00023E09 2.00023E09
0.4 6.78351E09 6.78351E09 1.27441E07 1.40904E09 1.40904E09
0.6 2.94847E08 2.94848E08 7.17246E07 2.15601E08 2.15601E08
0.8 9.26720E08 9.26720E08 2.53702E06 8.25922E08 8.25922E08
1 2.47478E07 2.47478E07 6.98138E06 2.35821E07 2.35821E07
5 0.2 3.16056E10 3.16065E10 4.57388E09 9.34614E10 9.34609E10
0.4 3.16960E09 3.16961E09 8.08667E08 6.58372E10 6.58377E10
0.6 1.37768E08 1.37768E08 4.55249E07 1.00740E08 1.00740E08
0.8 4.33012E08 4.33012E08 3.61084E07 3.85914E08 3.85914E08
1 1.15635E07 1.15635E07 4.43462E07 1.10188E07 1.10188E07

5. Numerical results and discussion

In this section, we provide the numerical solution to the Kuramoto-Sivashinsky equation for various values of , , and fractional order using two methods: TAM and NDM. In Example 1, Figure 1 (a,b and c), we show the surfaces of the precise solution, the analytical solution derived using the TAM approach, and the absolute error for Eq. (20). Figure 1 (d) shows the -curves for the FKS equation at and shows their convergence. In addition, in Figure 1 (e), we examined the precise solution and TAM for various values of n at , and we noticed that as n increases, the convergence of the two solutions (for negative x values) increases. As demonstrated in Figure 1 (f), values less than one increase the convergence between the exact solution and TAM. In Figure 2, we plotted the surfaces of both the exact solution and the TAM solution, as well as the absolute error between them, and compared them as in the first example, obtaining the same behaviour except in Figure 2 (f), where we discovered that values close to one provide a better approximation to the exact solution. For Examples 1 and 2, numerical results for various values of , , were given in Tables1 and 2 using the methods TAM and NDM, and the conclusions were reasonably similar to those in [30], but TAM method is better in convergence with the HATM method.

6. Conclusion

In this study, we successfully employed TAM and NDM to resolve the fractional Kuramoto-Sivashinsky problem. We give the numerical analysis of the FKS equation for two distinct initial conditions in the current analysis. The current techniques provide the parameter h1 which helps to control the convergence of the results obtained. The envisioned schemes manipulate and regulate the found solutions, which fast tend to the exact outcomes in a short sufficient area. According to the obtained results, TAM and NDM are capable of lowering work and evaluation time when compared to existing numerical algorithms while retaining high accuracy of results. As a result, we can infer that the used approaches are very systematic and extremely strong in analyzing fractional-order mathematical models.

Conflict of Interest: The author declare that there is no Conflict of Interest.

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R522), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

[1] Miller K.S., Ross B. An introduction to the fractional calculus and fractional differential equations. John Wiley & Sons, Inc., New York/Singapore, 1993.

[2] Podlubny I. Fractional differential equations, mathematics in science and engineering. Academic Press, San Diego, 1999.

[3] Almuneef A., Hagag A.E. Approximate solution of the fractional differential equation via the natural decomposition method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 42, 1-15, 2023.

[4] Wang Z., Huang X., Li Y.X., Song X.N. A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chinese Physics B, 22(1), 010504, 2013.

[5] Almuneef A., Hagag, A.E. Analytical solution to fractional differential equation arising in thermodynamics. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 49, 1-16, 2023.

[6] Hilfer R. (ed.). Applications of fractional calculus in physics. World scientific, Universität Mainz & Universität Stuttgart, Germany, pp. 472, 2000. . https://api.semanticscholar.org/CorpusID:117406670.

[7] Alqahtani Z., Hagag A.E. A new semi-analytical solution of compound KdV-Burgers equation of fractional order. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(4), 38, 1-16, 2023.

[8] Alqahtani, Z. and Hagag, A.E. A fractional numerical study on a plant disease model with replanting and preventive treatment. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 39(3), 27, 1-21, 2023.

[9] Li C., Chen G., Zhao S. Exact travelling wave solutions to the generalized Kuramoto-Sivashinsky equation. Latin American applied research, 34(1):65-68, 2004.

[10] Ellahi R., Alamri S.Z., Basit A., Majeed A. Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. Journal of Taibah University for Science, 12(4):476-482, 2018.

[11] Rademacher J.D., Wittenberg R.W. Viscous shocks in the destabilized Kuramoto-Sivashinsky equation. J. Comput. Nonlinear Dynam., 1(4):336-347, 2006.

[12] Zeeshan A., Hussain F., Ellahi R., Vafai K. A study of gravitational and magnetic effects on coupled stress bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. Journal of Molecular Liquids, 286, 110898, 2019.

[13] Khan A.A., Bukhari S.R., Marin, M., Ellahi R. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080, 2019.

[14] Prakash J., Tripathi D., Tiwari A.K., Sait S.M., Ellahi R. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry, 11(7):868, 2019.

[15] Riaz A., Ellahi R., Bhatti M.M., Marin M. Study of heat and mass transfer in the EyringPowell model of fluid propagating peristaltically through a rectangular compliant channel. Heat Transfer Research, 50(16):1539-1560, 2019.

[16] Conte R. Exact solutions of nonlinear partial differential equations by singularity analysis. In Direct and Inverse Methods in Nonlinear Evolution Equations. Lecture Notes in Physics, vol 632, Springer, Berlin, Heidelberg, 2003.

[17] Kuramoto Y., Tsuzuki T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Progress of theoretical physics, 55(2):356-369, 1976.

[18] Tadmor E. The well-posedness of the Kuramoto-Sivashinsky equation. SIAM Journal on Mathematical analysis, 17(4):884-893, 1986.

[19] Sivashinsky G.I. Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 15(1):179-199, 1983.

[20] Hooper A.P., Grimshaw R. Nonlinear instability at the interface between two viscous fluids. The Physics of Fluids, 28(1):37-45, 1985.

[21] Akrivis G., Smyrlis Y.S. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation. Applied Numerical Mathematics, 51(2-3):151-169, 2004.

[22] Akrivis G.D. Finite difference discretization of the KuramotoSivashinsky equation. Numerische Mathematik, 63:1-11, 1992.

[23] Ersoy O., Dag I. The exponential cubic b-Spline collocation method for the Kuramoto-Sivashinsky equation. Filomat, 30(3):853-861, 2016.

[24] Rezazadeh H., Ziabarya B.P. Sub-equation method for the conformable fractional generalized kuramoto sivashinsky equation. Computational Research Progress in Applied Science & Engineering, 2(3):106- 109, 2016.

[25] Manaa S.A., Easif F.H., Yousif M.A. Adomian decomposition method for Sslving the Kuramoto-Sivashinsky equation. IOSR Journal of Mathematics, 10:08-12, 2014.

[26] Kulkarni S., Takale K., Gaikwad S. Numerical solution of time fractional Kuramoto-Sivashinsky equation by Adomian decomposition method and applications. Malaya Journal of Matematik (MJM), 8(3):1078-1084, 2020.

[27] Okeke J.E., Okoli O.C., Obi T.A., Ujumadu R.N. New exact solution of a class of Kuramoto Sivashinsky (KS) equations using double reduction theory. International Journal of Innovative Science and Research Technology, 7(3):477-487, 2022.

[28] Kilicman A., Silambarasan R. Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry, 10(10):527, 2018.

[29] Noor M.A., Mohyud-Din S.T., Waheed A. Exp-function method for solving KuramotoSivashinsky and Boussinesq equations. Journal of Applied Mathematics and Computing, 29:1-13, 2009.

[30] Veeresha P., Prakasha D.G. Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique. International Journal of Applied and Computational Mathematics, 7(2):33, 2021.

[31] Abbasbandy S. Solitary wave solutions to the KuramotoSivashinsky equation by means of the homotopy analysis method. Nonlinear Dynamics, 52:35-40, 2008.

[32] Kurulay M., Secer A., Akinlar M.A. A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method. Applied Mathematics & Information Sciences, 7(1):267-271, 2013.

[33] Shah R., Khan H., Baleanu D., Kumam P., Arif M. A semianalytical method to solve family of Kuramoto-Sivashinsky equations. Journal of Taibah University for Science, 14(1):402-411, 2020.

[34] Acan O., Keskin Y. Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method. In AIP Conference Proceedings, 1648(1):470003, AIP Publishing LLC, 2015.

[35] Temimi H., Ansari A.R. A semi-analytical iterative technique for solving nonlinear problems. Computers & Mathematics with Applications, 61(2):203-210, 2011.

[36] Al-Hanaya A., Alotaibi M., Shqair M., Hagag A.E. MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 8(12):29440-29452, 2023.

[37] Rawashdeh M.S. The fractional natural decomposition method: theories and applications. Mathematical Methods in the Applied Sciences, 40(7):2362-2376, 2017.

[38] Liouville J. Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions. Journal de l'École Polytechnique, 13(21):1-69, 1832.

[39] Kilbas A.A., Srivastava H.M., Trujillo J.J. (eds.). Theory and applications of fractional differential equations. Elsevier, 204:1-523, 2006.

[40] Khan Z.H., Khan W.A. N-transform properties and applications. NUST Journal of Engineering Sciences, 1(1):127-133, 2008.

[41] Belgacem F.B.M., Silambarasan R. Advances in the natural transform. In AIP Conference Proceedings, 1493(1):106-110, American Institute of Physics, 2012.
Back to Top

Document information

Published on 22/02/24
Accepted on 14/02/24
Submitted on 29/11/23

Volume 40, Issue 1, 2024
DOI: 10.23967/j.rimni.2024.02.003
Licence: CC BY-NC-SA license

Document Score

0

Views 12
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?