(One intermediate revision by the same user not shown)
Line 3: Line 3:
  
 
The dynamic vibration response of sandwich beams with an anti-tetra-chiral lattice as a lightweight sandwiched core have been studied by using a nonlinear finite element analysis (FEA). Since the anti-tetra-chiral structure has a weak shear stiffness, its vibration response is strongly affected by the shear deformation. In our calculation, a 3-point bending flexural test was conducted for calculating the effective shear stiffness as well as the effective Young’s modulus of the chiral core. The natural frequency of the sandwich beam has been calculated by FEA, and predicted by using the Rayleigh-Ritz method, assuming that the sandwich beam is composed of composite continuum materials with equivalent Young’s modulus and shear modulus. Moreover, the natural frequency and damping ration of the sandwich beam produced by a 3D printer bas been measured through a vibration test, and compared with numerical results in order to clarify the effectiveness of the chiral sandwich beam as a mechanical component.
 
The dynamic vibration response of sandwich beams with an anti-tetra-chiral lattice as a lightweight sandwiched core have been studied by using a nonlinear finite element analysis (FEA). Since the anti-tetra-chiral structure has a weak shear stiffness, its vibration response is strongly affected by the shear deformation. In our calculation, a 3-point bending flexural test was conducted for calculating the effective shear stiffness as well as the effective Young’s modulus of the chiral core. The natural frequency of the sandwich beam has been calculated by FEA, and predicted by using the Rayleigh-Ritz method, assuming that the sandwich beam is composed of composite continuum materials with equivalent Young’s modulus and shear modulus. Moreover, the natural frequency and damping ration of the sandwich beam produced by a 3D printer bas been measured through a vibration test, and compared with numerical results in order to clarify the effectiveness of the chiral sandwich beam as a mechanical component.
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_688627368pap_142.pdf</pdf>

Latest revision as of 13:17, 16 November 2023

Abstract

The dynamic vibration response of sandwich beams with an anti-tetra-chiral lattice as a lightweight sandwiched core have been studied by using a nonlinear finite element analysis (FEA). Since the anti-tetra-chiral structure has a weak shear stiffness, its vibration response is strongly affected by the shear deformation. In our calculation, a 3-point bending flexural test was conducted for calculating the effective shear stiffness as well as the effective Young’s modulus of the chiral core. The natural frequency of the sandwich beam has been calculated by FEA, and predicted by using the Rayleigh-Ritz method, assuming that the sandwich beam is composed of composite continuum materials with equivalent Young’s modulus and shear modulus. Moreover, the natural frequency and damping ration of the sandwich beam produced by a 3D printer bas been measured through a vibration test, and compared with numerical results in order to clarify the effectiveness of the chiral sandwich beam as a mechanical component.

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 16/11/23
Submitted on 16/11/23

DOI: 10.23967/c.simam.2023.012
Licence: CC BY-NC-SA license

Document Score

0

Views 1
Recommendations 0

Share this document

Keywords

claim authorship

Are you one of the authors of this document?