m (JSanchez moved page Draft Sanchez Pinedo 189062518 to Weisz-Patrault 2023a) |
|||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
Optimal material properties of duplex stainless steels generally require near 50-50 ferrite-austenite microstructures. The development of additive manufacturing of duplex steels is hindered by difficulty in controlling cooling conditions to ensure a balanced phase ratio. In addition, non-uniform phase distribution is usually observed. Thus, sufficiently fast part scale process simulations are interesting to optimize process parameters to better predict and control the temperature history during fabrication and therefore solid-state phase transitions. Furthermore, stresses should also be taken into account in the optimization of the phase field in order to avoid cracking, buckling or excessive distortions. Numerical results obtained from a fast modeling of directed energy deposition including thermal analysis, diffusion of alloying element to account for phase transitions, and stress computation are analyzed. On this basis, we investigate the effect on stresses of an optimized fabrication strategy designed to target uniform and balanced ferrite-austenite ratio with respect to a reference printing strategy | Optimal material properties of duplex stainless steels generally require near 50-50 ferrite-austenite microstructures. The development of additive manufacturing of duplex steels is hindered by difficulty in controlling cooling conditions to ensure a balanced phase ratio. In addition, non-uniform phase distribution is usually observed. Thus, sufficiently fast part scale process simulations are interesting to optimize process parameters to better predict and control the temperature history during fabrication and therefore solid-state phase transitions. Furthermore, stresses should also be taken into account in the optimization of the phase field in order to avoid cracking, buckling or excessive distortions. Numerical results obtained from a fast modeling of directed energy deposition including thermal analysis, diffusion of alloying element to account for phase transitions, and stress computation are analyzed. On this basis, we investigate the effect on stresses of an optimized fabrication strategy designed to target uniform and balanced ferrite-austenite ratio with respect to a reference printing strategy | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_189062518pap_124.pdf</pdf> |
Optimal material properties of duplex stainless steels generally require near 50-50 ferrite-austenite microstructures. The development of additive manufacturing of duplex steels is hindered by difficulty in controlling cooling conditions to ensure a balanced phase ratio. In addition, non-uniform phase distribution is usually observed. Thus, sufficiently fast part scale process simulations are interesting to optimize process parameters to better predict and control the temperature history during fabrication and therefore solid-state phase transitions. Furthermore, stresses should also be taken into account in the optimization of the phase field in order to avoid cracking, buckling or excessive distortions. Numerical results obtained from a fast modeling of directed energy deposition including thermal analysis, diffusion of alloying element to account for phase transitions, and stress computation are analyzed. On this basis, we investigate the effect on stresses of an optimized fabrication strategy designed to target uniform and balanced ferrite-austenite ratio with respect to a reference printing strategy
Published on 16/11/23
Submitted on 16/11/23
DOI: 10.23967/c.simam.2023.010
Licence: CC BY-NC-SA license
Are you one of the authors of this document?