(One intermediate revision by the same user not shown)
Line 3: Line 3:
  
 
In this study, macro-scale thermal simulation of the laser powder bed fusion (LPBF) process is employed to predict and limit geometry-induced overheating of complex Ti6Al4V components. First, the overheating effect is reproduced in tensile specimens. Overheating is found to increase the local oxygen content by almost 80% and lower the elongation at break by over 70% in overheated regions. By employing macro-scale thermal simulations, an automated routine is developed to efficiently optimize the L-PBF process to prevent local overheating. Variable interlayer wait times are numerically optimized to allow cooling of the material without adding manufacturing time where this is not required. In this way, local overheating can successfully be prevented resulting in a more homogeneous temperature distribution during the L-PBF process. This method was found to fully restore the mechanical properties in geometries prone to overheating, resulting in more homogeneous and predictable Ti6Al4V components.
 
In this study, macro-scale thermal simulation of the laser powder bed fusion (LPBF) process is employed to predict and limit geometry-induced overheating of complex Ti6Al4V components. First, the overheating effect is reproduced in tensile specimens. Overheating is found to increase the local oxygen content by almost 80% and lower the elongation at break by over 70% in overheated regions. By employing macro-scale thermal simulations, an automated routine is developed to efficiently optimize the L-PBF process to prevent local overheating. Variable interlayer wait times are numerically optimized to allow cooling of the material without adding manufacturing time where this is not required. In this way, local overheating can successfully be prevented resulting in a more homogeneous temperature distribution during the L-PBF process. This method was found to fully restore the mechanical properties in geometries prone to overheating, resulting in more homogeneous and predictable Ti6Al4V components.
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_240790278pap_8.pdf</pdf>

Latest revision as of 13:16, 16 November 2023

Abstract

In this study, macro-scale thermal simulation of the laser powder bed fusion (LPBF) process is employed to predict and limit geometry-induced overheating of complex Ti6Al4V components. First, the overheating effect is reproduced in tensile specimens. Overheating is found to increase the local oxygen content by almost 80% and lower the elongation at break by over 70% in overheated regions. By employing macro-scale thermal simulations, an automated routine is developed to efficiently optimize the L-PBF process to prevent local overheating. Variable interlayer wait times are numerically optimized to allow cooling of the material without adding manufacturing time where this is not required. In this way, local overheating can successfully be prevented resulting in a more homogeneous temperature distribution during the L-PBF process. This method was found to fully restore the mechanical properties in geometries prone to overheating, resulting in more homogeneous and predictable Ti6Al4V components.

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 16/11/23
Submitted on 16/11/23

DOI: 10.23967/c.simam.2023.002
Licence: CC BY-NC-SA license

Document Score

0

Views 8
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?