Line 3: | Line 3: | ||
This paper focus on mathematical modelling and numerical simulation of human phonation process. The mathematical FSI model is presented consisting of the description of the structural model, the flow model and the coupling conditions. In order to treat the VFs contact, the problem of the glottis closure is addressed. To this end several ingredients are used including the use of suitable boundary conditions, modification of the flow model and robust mesh deformation algorithm. The FSI model is extended to FSAI problem by inclusion of the Lighthill model of aeroacoustics. The numerical approximation of the problem is presented and several numerical results are shown. | This paper focus on mathematical modelling and numerical simulation of human phonation process. The mathematical FSI model is presented consisting of the description of the structural model, the flow model and the coupling conditions. In order to treat the VFs contact, the problem of the glottis closure is addressed. To this end several ingredients are used including the use of suitable boundary conditions, modification of the flow model and robust mesh deformation algorithm. The FSI model is extended to FSAI problem by inclusion of the Lighthill model of aeroacoustics. The numerical approximation of the problem is presented and several numerical results are shown. | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_358594123pap_263.pdf</pdf> |
This paper focus on mathematical modelling and numerical simulation of human phonation process. The mathematical FSI model is presented consisting of the description of the structural model, the flow model and the coupling conditions. In order to treat the VFs contact, the problem of the glottis closure is addressed. To this end several ingredients are used including the use of suitable boundary conditions, modification of the flow model and robust mesh deformation algorithm. The FSI model is extended to FSAI problem by inclusion of the Lighthill model of aeroacoustics. The numerical approximation of the problem is presented and several numerical results are shown.
Published on 02/11/23
Submitted on 02/11/23
Volume Sharing Advances in Modelling Techniques for Fluid-Structure Interaction, 2023
DOI: 10.23967/c.coupled.2023.037
Licence: CC BY-NC-SA license
Are you one of the authors of this document?