Line 3: | Line 3: | ||
The aerodynamic performance of industrial aircraft is strongly coupled with the structural deformation under aerodynamic load. Consequently, multi-physics simulations represent an important asset during the design and optimization phases. Most of the Fluid-Structure Interaction (FSI) coupling approaches adopted by researchers and engineers can be divided into monolithic and partitioned techniques. The monolithic coupling, which consists of a unique system of equations for the coupled problem, is usually characterized by higher robustness and easier scalability. However, this approach is inherently customized for specific applications and requires a significant development effort. The partitioned coupling links existing software on a higher level, benefitting from higher flexibility and lower time-to-solution. As the computational world marches towards the exascale, black-box coupling libraries such as preCICE [2] aim to combine the flexibility and user-friendliness of partitioned approaches with complete and efficient usage of the available computational power. This paper focuses on aeroelasticity analyses currently performed at the Leonardo Labs facilities, exploiting the recently installed davinci-1 supercomputer [14]. Open-source CFD and structural dynamics software applications are coupled using preCICE to conduct fully threedimensional FSI analyses of aeroelastic test cases of industrial interest. The activities are part of a broader Digital Innovation industrial strategy centred on Digital Twins combining high-fidelity, highly scalable numerical simulations with data-driven AI models. | The aerodynamic performance of industrial aircraft is strongly coupled with the structural deformation under aerodynamic load. Consequently, multi-physics simulations represent an important asset during the design and optimization phases. Most of the Fluid-Structure Interaction (FSI) coupling approaches adopted by researchers and engineers can be divided into monolithic and partitioned techniques. The monolithic coupling, which consists of a unique system of equations for the coupled problem, is usually characterized by higher robustness and easier scalability. However, this approach is inherently customized for specific applications and requires a significant development effort. The partitioned coupling links existing software on a higher level, benefitting from higher flexibility and lower time-to-solution. As the computational world marches towards the exascale, black-box coupling libraries such as preCICE [2] aim to combine the flexibility and user-friendliness of partitioned approaches with complete and efficient usage of the available computational power. This paper focuses on aeroelasticity analyses currently performed at the Leonardo Labs facilities, exploiting the recently installed davinci-1 supercomputer [14]. Open-source CFD and structural dynamics software applications are coupled using preCICE to conduct fully threedimensional FSI analyses of aeroelastic test cases of industrial interest. The activities are part of a broader Digital Innovation industrial strategy centred on Digital Twins combining high-fidelity, highly scalable numerical simulations with data-driven AI models. | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_443263147pap_194.pdf</pdf> |
The aerodynamic performance of industrial aircraft is strongly coupled with the structural deformation under aerodynamic load. Consequently, multi-physics simulations represent an important asset during the design and optimization phases. Most of the Fluid-Structure Interaction (FSI) coupling approaches adopted by researchers and engineers can be divided into monolithic and partitioned techniques. The monolithic coupling, which consists of a unique system of equations for the coupled problem, is usually characterized by higher robustness and easier scalability. However, this approach is inherently customized for specific applications and requires a significant development effort. The partitioned coupling links existing software on a higher level, benefitting from higher flexibility and lower time-to-solution. As the computational world marches towards the exascale, black-box coupling libraries such as preCICE [2] aim to combine the flexibility and user-friendliness of partitioned approaches with complete and efficient usage of the available computational power. This paper focuses on aeroelasticity analyses currently performed at the Leonardo Labs facilities, exploiting the recently installed davinci-1 supercomputer [14]. Open-source CFD and structural dynamics software applications are coupled using preCICE to conduct fully threedimensional FSI analyses of aeroelastic test cases of industrial interest. The activities are part of a broader Digital Innovation industrial strategy centred on Digital Twins combining high-fidelity, highly scalable numerical simulations with data-driven AI models.
Published on 02/11/23
Submitted on 02/11/23
Volume Multi-Physics and Multi-Scale Simulations with the Coupling Library preCICE, 2023
DOI: 10.23967/c.coupled.2023.018
Licence: CC BY-NC-SA license
Are you one of the authors of this document?