m (JSanchez moved page Draft Sanchez Pinedo 493915083 to Orlandini et al 2023a) |
|||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
This paper describes a recently developed numerical technique to simulate high-speed flows on complex 3D inflatable structures using tetrahedral volume grids. In detail, the proposed methodology is based on the front-tracking approach, as it involves the coupling between a shock-fitting technique and a non-linear structural solver: by doing so, we are able to exploit the well-known advantages of shock-fitting regarding the computation and modelling of gas-dynamic discontinuities to deal with fluid-structure interaction problems. More details about the proposed technique and some applications to inflatable structures in hypersonic flows are presented in this paper | This paper describes a recently developed numerical technique to simulate high-speed flows on complex 3D inflatable structures using tetrahedral volume grids. In detail, the proposed methodology is based on the front-tracking approach, as it involves the coupling between a shock-fitting technique and a non-linear structural solver: by doing so, we are able to exploit the well-known advantages of shock-fitting regarding the computation and modelling of gas-dynamic discontinuities to deal with fluid-structure interaction problems. More details about the proposed technique and some applications to inflatable structures in hypersonic flows are presented in this paper | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_493915083fluid5.pdf</pdf> |
This paper describes a recently developed numerical technique to simulate high-speed flows on complex 3D inflatable structures using tetrahedral volume grids. In detail, the proposed methodology is based on the front-tracking approach, as it involves the coupling between a shock-fitting technique and a non-linear structural solver: by doing so, we are able to exploit the well-known advantages of shock-fitting regarding the computation and modelling of gas-dynamic discontinuities to deal with fluid-structure interaction problems. More details about the proposed technique and some applications to inflatable structures in hypersonic flows are presented in this paper
Published on 19/10/23
Submitted on 19/10/23
Volume Fluid-structure Interaction and Wind Engineering, 2023
DOI: 10.23967/c.membranes.2023.009
Licence: CC BY-NC-SA license
Are you one of the authors of this document?