Line 3: Line 3:
  
 
As a potential precursor, the utilization of sugarcane bagasse ash imparts enormous technical and environmental benefits to human society. However, its rich crystal content challenges the mix design of sugarcane bagasse ash-involved geopolymers. The present study is aimed to contribute toward the substantial utilization of sugarcane bagasse ash in geopolymers and develop a guideline for designing binary geopolymers from metakaolin and sugarcane bagasse ash. The experimental results show that when suitably designed, the compressive strength of metakaolin-sugarcane bagasse ash geopolymers satisfied the structural use in building engineering, and the sugarcane bagasse ash proportion could substantially reach up to 50%. Moreover, through a combination of mechanical, economic and environmental assessments, the optimal mixing proportions fall into the following ranges: SiO2/Al2O3=4.63~5.60, Na2O/Al2O3=1.5~2.0 and H2O/Na2O=8~10. Further, multi-factor models are proposed to regulate the mix design of binary geopolymers, with a R2 value beyond 0.9 .
 
As a potential precursor, the utilization of sugarcane bagasse ash imparts enormous technical and environmental benefits to human society. However, its rich crystal content challenges the mix design of sugarcane bagasse ash-involved geopolymers. The present study is aimed to contribute toward the substantial utilization of sugarcane bagasse ash in geopolymers and develop a guideline for designing binary geopolymers from metakaolin and sugarcane bagasse ash. The experimental results show that when suitably designed, the compressive strength of metakaolin-sugarcane bagasse ash geopolymers satisfied the structural use in building engineering, and the sugarcane bagasse ash proportion could substantially reach up to 50%. Moreover, through a combination of mechanical, economic and environmental assessments, the optimal mixing proportions fall into the following ranges: SiO2/Al2O3=4.63~5.60, Na2O/Al2O3=1.5~2.0 and H2O/Na2O=8~10. Further, multi-factor models are proposed to regulate the mix design of binary geopolymers, with a R2 value beyond 0.9 .
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_465501084112.pdf</pdf>

Revision as of 11:30, 3 October 2023

Abstract

As a potential precursor, the utilization of sugarcane bagasse ash imparts enormous technical and environmental benefits to human society. However, its rich crystal content challenges the mix design of sugarcane bagasse ash-involved geopolymers. The present study is aimed to contribute toward the substantial utilization of sugarcane bagasse ash in geopolymers and develop a guideline for designing binary geopolymers from metakaolin and sugarcane bagasse ash. The experimental results show that when suitably designed, the compressive strength of metakaolin-sugarcane bagasse ash geopolymers satisfied the structural use in building engineering, and the sugarcane bagasse ash proportion could substantially reach up to 50%. Moreover, through a combination of mechanical, economic and environmental assessments, the optimal mixing proportions fall into the following ranges: SiO2/Al2O3=4.63~5.60, Na2O/Al2O3=1.5~2.0 and H2O/Na2O=8~10. Further, multi-factor models are proposed to regulate the mix design of binary geopolymers, with a R2 value beyond 0.9 .

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 03/10/23
Submitted on 03/10/23

DOI: 10.23967/c.dbmc.2023.112
Licence: CC BY-NC-SA license

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?