Line 3: | Line 3: | ||
The thermal-resistivity effect of the carbon fiber reinforced cement (CFRC) has been successfully applied to monitor the temperature of concrete structures. There are insufficient studies on the thermal-resistivity effect of the carbon fabric reinforced cementitious matrix (CFRCM). In this paper, the resistance change of CFRCM from room temperature to 120℃ and the thermal-resistivity characteristics during repeated heating have been studied. It was showed that during the heating process, with the continuous increasement of the carrier concentration, the specimen exhibited obvious negative temperature coefficient (NTC) effect, and a temperature rise of 10℃ lessened relative resistance change by about 0.4%. However, some carriers stayed in the conduction band after the first cooling. Then, the resistance cannot return to the original value, and the curves of subsequent heating processes had a good repeatability. | The thermal-resistivity effect of the carbon fiber reinforced cement (CFRC) has been successfully applied to monitor the temperature of concrete structures. There are insufficient studies on the thermal-resistivity effect of the carbon fabric reinforced cementitious matrix (CFRCM). In this paper, the resistance change of CFRCM from room temperature to 120℃ and the thermal-resistivity characteristics during repeated heating have been studied. It was showed that during the heating process, with the continuous increasement of the carrier concentration, the specimen exhibited obvious negative temperature coefficient (NTC) effect, and a temperature rise of 10℃ lessened relative resistance change by about 0.4%. However, some carriers stayed in the conduction band after the first cooling. Then, the resistance cannot return to the original value, and the curves of subsequent heating processes had a good repeatability. | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_55762666215.pdf</pdf> |
The thermal-resistivity effect of the carbon fiber reinforced cement (CFRC) has been successfully applied to monitor the temperature of concrete structures. There are insufficient studies on the thermal-resistivity effect of the carbon fabric reinforced cementitious matrix (CFRCM). In this paper, the resistance change of CFRCM from room temperature to 120℃ and the thermal-resistivity characteristics during repeated heating have been studied. It was showed that during the heating process, with the continuous increasement of the carrier concentration, the specimen exhibited obvious negative temperature coefficient (NTC) effect, and a temperature rise of 10℃ lessened relative resistance change by about 0.4%. However, some carriers stayed in the conduction band after the first cooling. Then, the resistance cannot return to the original value, and the curves of subsequent heating processes had a good repeatability.
Published on 03/10/23
Submitted on 03/10/23
DOI: 10.23967/c.dbmc.2023.015
Licence: CC BY-NC-SA license
Are you one of the authors of this document?