(Created blank page) |
m (JSanchez moved page Draft Sanchez Pinedo 618800472 to Tongwei et al 2023a) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | ==Abstract== | ||
+ | As the development process of affordable wind power projects accelerates, the height of tower hub shows a trend of development to 150m above. The technology of steel and concrete is widely applied. Bed mortar material, as the bonding material between precast concrete rings, is the key material to ensure the lifting speed of steel and concrete tower for wind power. In this study, the basic formula of negative temperature and high strength bed mortar material was explored, and its working performance and strength development under different curing conditions were further studied. The results show that the developed bed mortar material has excellent thixotropy and it is still operable at 50min. Under the condition of negative temperature curing, the early strength of bed mortar material is high, and the late strength develops well. Curing at ultra-low temperature of -15℃, the strength of -1d is 35.4MPa, and the strength of -7+21d is over 90MPa. In the outdoor natural curing environment of alternating positive and negative temperatures, the strength of 1d reaches 51.1MPa, the strength of 60d is 113.2MPa. The performance of bed mortar material far meets the requirements of the strength grade of 80MPa which is used in winter construction of wind power engineering. | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_61880047210.pdf</pdf> |
As the development process of affordable wind power projects accelerates, the height of tower hub shows a trend of development to 150m above. The technology of steel and concrete is widely applied. Bed mortar material, as the bonding material between precast concrete rings, is the key material to ensure the lifting speed of steel and concrete tower for wind power. In this study, the basic formula of negative temperature and high strength bed mortar material was explored, and its working performance and strength development under different curing conditions were further studied. The results show that the developed bed mortar material has excellent thixotropy and it is still operable at 50min. Under the condition of negative temperature curing, the early strength of bed mortar material is high, and the late strength develops well. Curing at ultra-low temperature of -15℃, the strength of -1d is 35.4MPa, and the strength of -7+21d is over 90MPa. In the outdoor natural curing environment of alternating positive and negative temperatures, the strength of 1d reaches 51.1MPa, the strength of 60d is 113.2MPa. The performance of bed mortar material far meets the requirements of the strength grade of 80MPa which is used in winter construction of wind power engineering.
Published on 03/10/23
Submitted on 03/10/23
DOI: 10.23967/c.dbmc.2023.010
Licence: CC BY-NC-SA license
Are you one of the authors of this document?