AlanaWolfson (talk | contribs) (Created page with "==1 Title, abstract and keywords<!-- Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviatio...") |
AlanaWolfson (talk | contribs) (Tag: Visual edit) |
||
Line 1: | Line 1: | ||
− | == | + | ==Abstract<!-- Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible. Capitalize the first word of the title. Provide a maximum of 6 keywords, and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field should be used. These keywords will be used for indexing purposes. An abstract is required for every document; it should succinctly summarize the reason for the work, the main findings, and the conclusions of the study. Abstract is often presented separately from the article, so it must be able to stand alone. For this reason, references and hyperlinks should be avoided. If references are essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself. -->== |
+ | Clove oil, ''Eugenia caryophyllata'', has been implemented as home therapeutic medicine for its anesthetic effects. The active ingredient, eugenol inhibits voltage gated sodium channels, hence sedating as an anesthetic. Clove oil provides an alternative for synthetic analgesics including morphine. The typical application of clove oil consists of topical application through liquid immersion. In addition to liquid, emulsification gel application allows for another form of controlled penetrative topical drug delivery. Moreover epicutaneous application through microneedles allowed for a non-invasive administrative method of delivering clove oil between the cuticle and epidermis. Earthworms ''Lumbricus terrestris'' were the specimens tested due to their complex neurological functionalities. Mobility, convulsions, stimuli response, regeneration, and mortality were evaluated with concentrations of 0%, 1%, 2%, 3% with gel/immersion, and additional 0.5% with epicutaneous application. Different components of the experiment were conducted within a time-span of three years. 1% epicutaneous was shown to sedate the stimuli response of earthworms at an extremely fast rate. Furthermore 1% clove oil of all administration methods were the most effective as compared to lower concentrations 0.5% and higher concentrations 2%-3%. None of the administrative methods or concentrations of clove oil application caused limitations in regeneration, convulsive movements, or increased rate in mortality. The limitations of this experiment consist of not consistently regulating the temperature of the medium. Future implications consist of more trials for validation and evaluating vaporization as another potential application. 1% epicutaneous showed an efficient form of sedation without severe behavioral and physiological complications. | ||
− | |||
− | |||
+ | ==Introduction<!-- You can enter and format the text of this document by selecting the ‘Edit’ option in the menu at the top of this frame or next to the title of every section of the document. This will give access to the visual editor. Alternatively, you can edit the source of this document (Wiki markup format) by selecting the ‘Edit source’ option. Most of the documents in Scipedia are written in English (write your manuscript in American or British English, but not a mixture of these). Anyhow, specific publications in other languages can be published in Scipedia. In any case, the documents published in other languages must have an abstract written in English. 2.1 Subsections Divide your article into clearly defined and numbered sections. Subsections should be numbered 1.1, 1.2, etc. and then 1.1.1, 1.1.2, ... Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Capitalize the first word of the headings. 2.2 General guidelines Some general guidelines that should be followed in your manuscripts are: * Avoid hyphenation at the end of a line. * Symbols denoting vectors and matrices should be indicated in bold type. Scalar variable names should normally be expressed using italics. * Use decimal points (not commas); use a space for thousands (10 000 and above). * Follow internationally accepted rules and conventions. In particular use the international system of units (SI). If other quantities are mentioned, give their equivalent in SI. 2.3 Tables, figures, lists and equations Please insert tables as editable text and not as images. Tables should be placed next to the relevant text in the article. Number tables consecutively in accordance with their appearance in the text and place any table notes below the table body. Be sparing in the use of tables and ensure that the data presented in them do not duplicate results described elsewhere in the article. Graphics may be inserted directly in the document and positioned as they should appear in the final manuscript. Number the figures according to their sequence in the text. Ensure that each illustration has a caption. A caption should comprise a brief title. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used. Try to keep the resolution of the figures to a minimum of 300 dpi. If a finer resolution is required, the figure can be inserted as supplementary material For tabular summations that do not deserve to be presented as a table, lists are often used. Lists may be either numbered or bulleted. Below you see examples of both. 1. The first entry in this list 2. The second entry 2.1. A subentry 3. The last entry * A bulleted list item * Another one You may choose to number equations for easy referencing. In that case they must be numbered consecutively with Arabic numerals in parentheses on the right hand side of the page. Below is an example of formulae that should be referenced as eq. (1]. 2.4 Supplementary material Supplementary material can be inserted to support and enhance your article. This includes video material, animation sequences, background datasets, computational models, sound clips and more. In order to ensure that your material is directly usable, please provide the files with a preferred maximum size of 50 MB. Please supply a concise and descriptive caption for each file. -->== | ||
+ | ''Anesthesia'' | ||
− | + | Anesthesia is utilized in modern day medicine for the purpose of protective analgesia, in a wide variety of invasive and noninvasive surgical procedures. Local and general anesthesia are common forms of treatment that are primarily used for the surgical repairment of open traumas. The complexity of anesthesia inhibition and safety are crucial factors that need to remain constant to prevent post-surgical complications. Current research suggests that certain forms of steroidal anesthesia are detrimental to the physiological characteristics of less complex species to even humans. Research on the steroid injections in the cervical spinal region of a human were demonstrated as a leading cause of neurological infarct, a neurological compilation associated with tissue necrosis [14]. Moreover, more common forms of local and general anesthesia were demonstrated to hinder factors of the morphological as well as the behavioral functionalities of less complex organisms, such as annelids. It was established that lidocaine and prilocaine, through immersion administration, causes coelomocyte extrusion and erratic behavior in earthworms [12]. Therefore, this demonstrates that anesthesia administration must be potent as well as safe when treating an organism undergoing surgical procedures. In addition to limiting the usage of certain synthetic anesthetics, offering individuals a wider selection of anesthesia would prevent complications such as drug relapse. As an example, individuals at risk for drug relapse cannot get treated with psychotropic anesthetics such as morphine [13]. Overall, the issues of certain forms of modern day local synthetic anesthetics prompt the necessity of a holistic alternative. | |
− | + | ''Clove oil'' | |
+ | It is not one of the most broadly known herbs, however clove oil has numerous utilizations as an anticarcinogenic, antioxidant, and as an analgesic supplement. Clove oil may serve as a replacement for an anesthetic that is separated from Clove ''Syzygium aromaticum''. Clove oil is derived from an herb that initially originates from India. Clove oil is utilized for an assortment of purposes, including as an antimicrobial, to help eliminate microscopic organisms, and as a pain reliever, to ease respiratory conditions, etc. [17]. ''Syzygium aromaticum'' contains an active chemical agent known as eugenol, which has comparable characteristics to a local anesthetic, thus making it a holistic anesthetic with antibacterial properties. Eugenol an active agent, and phenolic compound in clove oil can be compared to local anesthetics. Eugenol has the potency to inhibit voltage-gated sodium channels (VGSC), which are neurological receptors that are responsible for the communication of neurons as well as cells throughout the body and activation of transient receptor potential vanilloid subtype 1 (TRPV1), which shows sedative effects [11]. Moreover, prior studies demonstrated that low concentrations of clove oil assist in lowering the levels of stress while not altering the cardiovascular response of the aquatic organisms during transportation [5]. Furthermore, the topical application of clove oil in dentistry exemplifies another administration method of clove oil that is deemed as safe and effective [3] Since clove oil is popular in dentistry because of its soothing properties, it is available over the counter at a drugstore. There are multiple studies that suggest clove oil as a topical and local anesthetic for minor oral health issues such as toothaches. Clove oil has the potency to sedate a small portion of the mouth as a local anesthetic replacement with buccal patch serratiopeptidase [16]. Along with toothaches, cloves are alleviating the pain of dry socket, a typical circumstance that can occur from teeth extractions [3]. | ||
− | + | According to the previous experiment that was conducted regarding establishing an appropriate concentration of clove oil, it was demonstrated that the 1% concentration of clove oil was effective in sedating as a local and general anesthetic at a fast rate without causing any behavioral complications. Such results established that lower concentrations of clove oil were more effective and did not cause any neurological deficiencies. In this experiment, the concentrations of clove oil consisted of 0%, 0.5%, &amp; 1%, based on how the 1% was demonstrated as efficient and safe. | |
− | + | ''Earthworms'' | |
+ | The organism that was utilized for this experiment is earthworm, ''Lumbricus terrestris''. Earthworm's bodies are composed of ring-like portions called annuli. These portions are shrouded in setae, or little fibers, which the worms use for mobility. Furthermore, earthworms are viewed as one of the most suitable specimens for ecotoxicological testing [8]. Although these annelids are one of the simpler preserved invertebrates, the digestive, circulatory, reproductive, and nervous systems are well-evolved and simple to recognize, making them ideal specimens. Specifically, the earthworms have a structure known as the cerebral ganglia that was comparable to the human brain, as they both control all the bodily functions that can range from stimuli response to regeneration [7]. Additionally, earthworms have comparable skin layers with humans because they are both used for protection and excretion [15]. Overall, there were several indistinguishable attributes, contributing to one of the main purposes of this experiment which was to evaluate the earthworm's neurological complex characteristics to establish their similarities with humans. In addition to mobility and physical behavior, ''Lumbricus terrestris'' are flexible invertebrates that have the physical ability to self-regenerate after trauma [4]. The regeneration ability of earthworms was determined by its neurological attributes, which can be affected by anesthesia. Therefore, the regeneration process and the regeneration rate were also investigated in this experiment. Regeneration was an important aspect to examine to distinguish any side effects that can possibly harm or benefit the earthworms. Additionally, regeneration represents a surgical procedure which allows the correlation between tissue healing and growth to be identified. | ||
− | + | ''Immersion'' | |
− | + | Clove oil immersion is an anesthesia administration method that is comparable to topical application. Immersion consists of the process of submerging an organ or an organism in an anesthetic solution to sedate. Specifically, clove oil immersion in earthworms consists of submerging tail annuli, thus making it effective without hindering any organs such as the cerebral ganglia. Although immersion is a noninvasive form of anesthesia administration, it only sedates moderately compared to vaporization or intravenous venipuncture. Research has demonstrated that topical application of local anesthetics is noninvasive because they do not cause any histopathological changes, however, are only somewhat effective since they are only applied on mucosal and skin barriers [1]. Immersion is a noninvasive anesthesia application method but is not the most applicable for local anesthesia in more complex organisms including humans. | |
− | + | ''Epicutaneous'' | |
− | + | Epicutaneous administration is utilized in immunological, as well as dermatological medicine. This process consists of delivering a substance within the epidermis layer of an organism. Moreover, the wide variety of implications that epicutaneous administration has on delivering a substance in an organism are used to diagnose allergic reactions and to promote skin rejuvenation. In other words, the common purpose behind utilizing this application revolves around medical screening and fortifying an organism’s health. The immunological purposes consist of analyzing the severity of allergens and as a form of immunotherapy. The recognition and reduction of aero and oral allergic responses aref undamental variables that correspond to epicutaneous administration tests [2]; [10]. Moreover, forms of epicutaneous application consist of derma patching, derma stamping with microneedles (skin pricks), as well derma scratching. Research conducted on utilizing derma patching as a form of topical local anesthesia application for skin grafts as well as labor pain and was suggested as a safer alternative compared to intravenous administration [6]; [9]. Nevertheless, microneedling and derma scratching have not been utilized to apply analgesics or sedate organisms. Moreover, the dermatological implications of epicutaneous derma stamping, are extremely beneficial towards inducing skin rejuvenation from hypertrophic scarring by delivering serums through a safe and non-invasive manner. Such research indicates that epicutaneous microneedle administration is an effective drug delivery methodology that is noninvasive and efficient. Notably, administering clove oil as a form of local anesthesia through epicutaneous microneedling would indisputably sedate earthworms efficiently and noninvasively. | |
− | + | ''Nanoemulgel'' | |
− | + | Medications in the form of gel have a wide variety of benefits in terms of convenience and potency. Specifically applying medications with a gel base allows for a controlled drug delivery. Previous research on medicinal gels such as nanoemulgel shows it aids in drug penetration when applied topically. Specifically, emulsification gel allows for controlled drug delivery through the outermost layer of the epidermis skin layer (Morteza-Semnani et al., 2021). Emulgel is applicable to clove oil treatment based on previous research incorporating clove oil gel for bacterial inhibition. Eugenol was previously utilized as an oil phase in the formulation of a ketoprofen nanoemulgel. It was found that the gel formulation had synergistic antibacterial activity (Srivastava, 2014). In other words, clove oil concentrations formulated in gel can allow for an increase in anesthetic efficiency and a controlled drug release system. A form of gel, white petroleum jelly was used to formulate clove oil into a gel application. Petroleum jelly can be utilized as a moisturizing agent as well as drug delivery application. Previous research evaluated petroleum jelly as a vehicle for liposomal drug delivery through skin layers (Foldvari, 1996). A commercialized over-the-counter form of petroleum jelly consists of Vaseline. 100% Petroleum jelly Vaseline was used as a base to establish 0%, 1%, and 2% clove oil concentrations as an emulgel. | |
+ | ''Stimulus Response Assay'' | ||
− | + | The stimulus response tests involve measuring the behavioral responses after the initial sedation of the earthworms. These tests were completed in the form of an invasive probe. Normally, hypodermic needles are used to decide how their structure impacts the simplicity of inclusion into the skin, understanding patient pain and skin injury; however, in the last experiment, a toothpick was utilized for safety purposes. Additionally, sharpness was dictated by estimating the penetration power of a probe into a known medium which intently replicates skin. A membrane of uniform thickness was held under constant strain and was repositioned to permit numerous tests to be performed (Mecmesin et al., 2020). Additionally, a key part of the fixturing was to guarantee that the instrument did not flex during the test and that the angle was constantly the same in order to preserve the validity. Overall stimulus response was utilized to measure the initial reaction of an organism based on physical stimuli. | |
− | + | ==Materials and Methods<!-- Citations in text will follow a citation-sequence system (i.e. sources are numbered by order of reference so that the first reference cited in the document is [1], the second [2], and so on) with the number of the reference in square brackets. Once a source has been cited, the same number is used in all subsequent references. If the numbers are not in a continuous sequence, use commas (with no spaces) between numbers. If you have more than two numbers in a continuous sequence, use the first and last number of the sequence joined by a hyphen You should ensure that all references are cited in the text and that the reference list. References should preferably refer to documents published in Scipedia. Unpublished results should not be included in the reference list, but can be mentioned in the text. The reference data must be updated once publication is ready. Complete bibliographic information for all cited references must be given following the standards in the field (IEEE and ISO 690 standards are recommended). If possible, a hyperlink to the referenced publication should be given. See examples for Scipedia’s articles [1], other publication articles [2], books [3], book chapter [4], conference proceedings [5], and online documents [6], shown in references section below. -->== | |
− | + | Preparation of Earthworms | |
− | + | The earthworms, L. terrestris, were obtained from the Carolina Biological Website (25/container). The earthworms were kept in a large container with compacted mouse pellets and a Sphagnum moss medium sprinkled with dandelion root tea leaves. The earthworms were separated into bins of groups of fifteen to ensure validity and accuracy within the results. Additionally, this allowed the earthworms to be separated and protected overnight when supervision was not present. The earthworms were organized into different categories based on the type of test administration method; clove oil concentration as shown in Table 1. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Clove oil, Eugenia caryophyllata, has been implemented as home therapeutic medicine for its anesthetic effects. The active ingredient, eugenol inhibits voltage gated sodium channels, hence sedating as an anesthetic. Clove oil provides an alternative for synthetic analgesics including morphine. The typical application of clove oil consists of topical application through liquid immersion. In addition to liquid, emulsification gel application allows for another form of controlled penetrative topical drug delivery. Moreover epicutaneous application through microneedles allowed for a non-invasive administrative method of delivering clove oil between the cuticle and epidermis. Earthworms Lumbricus terrestris were the specimens tested due to their complex neurological functionalities. Mobility, convulsions, stimuli response, regeneration, and mortality were evaluated with concentrations of 0%, 1%, 2%, 3% with gel/immersion, and additional 0.5% with epicutaneous application. Different components of the experiment were conducted within a time-span of three years. 1% epicutaneous was shown to sedate the stimuli response of earthworms at an extremely fast rate. Furthermore 1% clove oil of all administration methods were the most effective as compared to lower concentrations 0.5% and higher concentrations 2%-3%. None of the administrative methods or concentrations of clove oil application caused limitations in regeneration, convulsive movements, or increased rate in mortality. The limitations of this experiment consist of not consistently regulating the temperature of the medium. Future implications consist of more trials for validation and evaluating vaporization as another potential application. 1% epicutaneous showed an efficient form of sedation without severe behavioral and physiological complications.
Anesthesia
Anesthesia is utilized in modern day medicine for the purpose of protective analgesia, in a wide variety of invasive and noninvasive surgical procedures. Local and general anesthesia are common forms of treatment that are primarily used for the surgical repairment of open traumas. The complexity of anesthesia inhibition and safety are crucial factors that need to remain constant to prevent post-surgical complications. Current research suggests that certain forms of steroidal anesthesia are detrimental to the physiological characteristics of less complex species to even humans. Research on the steroid injections in the cervical spinal region of a human were demonstrated as a leading cause of neurological infarct, a neurological compilation associated with tissue necrosis [14]. Moreover, more common forms of local and general anesthesia were demonstrated to hinder factors of the morphological as well as the behavioral functionalities of less complex organisms, such as annelids. It was established that lidocaine and prilocaine, through immersion administration, causes coelomocyte extrusion and erratic behavior in earthworms [12]. Therefore, this demonstrates that anesthesia administration must be potent as well as safe when treating an organism undergoing surgical procedures. In addition to limiting the usage of certain synthetic anesthetics, offering individuals a wider selection of anesthesia would prevent complications such as drug relapse. As an example, individuals at risk for drug relapse cannot get treated with psychotropic anesthetics such as morphine [13]. Overall, the issues of certain forms of modern day local synthetic anesthetics prompt the necessity of a holistic alternative.
Clove oil
It is not one of the most broadly known herbs, however clove oil has numerous utilizations as an anticarcinogenic, antioxidant, and as an analgesic supplement. Clove oil may serve as a replacement for an anesthetic that is separated from Clove Syzygium aromaticum. Clove oil is derived from an herb that initially originates from India. Clove oil is utilized for an assortment of purposes, including as an antimicrobial, to help eliminate microscopic organisms, and as a pain reliever, to ease respiratory conditions, etc. [17]. Syzygium aromaticum contains an active chemical agent known as eugenol, which has comparable characteristics to a local anesthetic, thus making it a holistic anesthetic with antibacterial properties. Eugenol an active agent, and phenolic compound in clove oil can be compared to local anesthetics. Eugenol has the potency to inhibit voltage-gated sodium channels (VGSC), which are neurological receptors that are responsible for the communication of neurons as well as cells throughout the body and activation of transient receptor potential vanilloid subtype 1 (TRPV1), which shows sedative effects [11]. Moreover, prior studies demonstrated that low concentrations of clove oil assist in lowering the levels of stress while not altering the cardiovascular response of the aquatic organisms during transportation [5]. Furthermore, the topical application of clove oil in dentistry exemplifies another administration method of clove oil that is deemed as safe and effective [3] Since clove oil is popular in dentistry because of its soothing properties, it is available over the counter at a drugstore. There are multiple studies that suggest clove oil as a topical and local anesthetic for minor oral health issues such as toothaches. Clove oil has the potency to sedate a small portion of the mouth as a local anesthetic replacement with buccal patch serratiopeptidase [16]. Along with toothaches, cloves are alleviating the pain of dry socket, a typical circumstance that can occur from teeth extractions [3].
According to the previous experiment that was conducted regarding establishing an appropriate concentration of clove oil, it was demonstrated that the 1% concentration of clove oil was effective in sedating as a local and general anesthetic at a fast rate without causing any behavioral complications. Such results established that lower concentrations of clove oil were more effective and did not cause any neurological deficiencies. In this experiment, the concentrations of clove oil consisted of 0%, 0.5%, & 1%, based on how the 1% was demonstrated as efficient and safe.
Earthworms
The organism that was utilized for this experiment is earthworm, Lumbricus terrestris. Earthworm's bodies are composed of ring-like portions called annuli. These portions are shrouded in setae, or little fibers, which the worms use for mobility. Furthermore, earthworms are viewed as one of the most suitable specimens for ecotoxicological testing [8]. Although these annelids are one of the simpler preserved invertebrates, the digestive, circulatory, reproductive, and nervous systems are well-evolved and simple to recognize, making them ideal specimens. Specifically, the earthworms have a structure known as the cerebral ganglia that was comparable to the human brain, as they both control all the bodily functions that can range from stimuli response to regeneration [7]. Additionally, earthworms have comparable skin layers with humans because they are both used for protection and excretion [15]. Overall, there were several indistinguishable attributes, contributing to one of the main purposes of this experiment which was to evaluate the earthworm's neurological complex characteristics to establish their similarities with humans. In addition to mobility and physical behavior, Lumbricus terrestris are flexible invertebrates that have the physical ability to self-regenerate after trauma [4]. The regeneration ability of earthworms was determined by its neurological attributes, which can be affected by anesthesia. Therefore, the regeneration process and the regeneration rate were also investigated in this experiment. Regeneration was an important aspect to examine to distinguish any side effects that can possibly harm or benefit the earthworms. Additionally, regeneration represents a surgical procedure which allows the correlation between tissue healing and growth to be identified.
Immersion
Clove oil immersion is an anesthesia administration method that is comparable to topical application. Immersion consists of the process of submerging an organ or an organism in an anesthetic solution to sedate. Specifically, clove oil immersion in earthworms consists of submerging tail annuli, thus making it effective without hindering any organs such as the cerebral ganglia. Although immersion is a noninvasive form of anesthesia administration, it only sedates moderately compared to vaporization or intravenous venipuncture. Research has demonstrated that topical application of local anesthetics is noninvasive because they do not cause any histopathological changes, however, are only somewhat effective since they are only applied on mucosal and skin barriers [1]. Immersion is a noninvasive anesthesia application method but is not the most applicable for local anesthesia in more complex organisms including humans.
Epicutaneous
Epicutaneous administration is utilized in immunological, as well as dermatological medicine. This process consists of delivering a substance within the epidermis layer of an organism. Moreover, the wide variety of implications that epicutaneous administration has on delivering a substance in an organism are used to diagnose allergic reactions and to promote skin rejuvenation. In other words, the common purpose behind utilizing this application revolves around medical screening and fortifying an organism’s health. The immunological purposes consist of analyzing the severity of allergens and as a form of immunotherapy. The recognition and reduction of aero and oral allergic responses aref undamental variables that correspond to epicutaneous administration tests [2]; [10]. Moreover, forms of epicutaneous application consist of derma patching, derma stamping with microneedles (skin pricks), as well derma scratching. Research conducted on utilizing derma patching as a form of topical local anesthesia application for skin grafts as well as labor pain and was suggested as a safer alternative compared to intravenous administration [6]; [9]. Nevertheless, microneedling and derma scratching have not been utilized to apply analgesics or sedate organisms. Moreover, the dermatological implications of epicutaneous derma stamping, are extremely beneficial towards inducing skin rejuvenation from hypertrophic scarring by delivering serums through a safe and non-invasive manner. Such research indicates that epicutaneous microneedle administration is an effective drug delivery methodology that is noninvasive and efficient. Notably, administering clove oil as a form of local anesthesia through epicutaneous microneedling would indisputably sedate earthworms efficiently and noninvasively.
Nanoemulgel
Medications in the form of gel have a wide variety of benefits in terms of convenience and potency. Specifically applying medications with a gel base allows for a controlled drug delivery. Previous research on medicinal gels such as nanoemulgel shows it aids in drug penetration when applied topically. Specifically, emulsification gel allows for controlled drug delivery through the outermost layer of the epidermis skin layer (Morteza-Semnani et al., 2021). Emulgel is applicable to clove oil treatment based on previous research incorporating clove oil gel for bacterial inhibition. Eugenol was previously utilized as an oil phase in the formulation of a ketoprofen nanoemulgel. It was found that the gel formulation had synergistic antibacterial activity (Srivastava, 2014). In other words, clove oil concentrations formulated in gel can allow for an increase in anesthetic efficiency and a controlled drug release system. A form of gel, white petroleum jelly was used to formulate clove oil into a gel application. Petroleum jelly can be utilized as a moisturizing agent as well as drug delivery application. Previous research evaluated petroleum jelly as a vehicle for liposomal drug delivery through skin layers (Foldvari, 1996). A commercialized over-the-counter form of petroleum jelly consists of Vaseline. 100% Petroleum jelly Vaseline was used as a base to establish 0%, 1%, and 2% clove oil concentrations as an emulgel.
Stimulus Response Assay
The stimulus response tests involve measuring the behavioral responses after the initial sedation of the earthworms. These tests were completed in the form of an invasive probe. Normally, hypodermic needles are used to decide how their structure impacts the simplicity of inclusion into the skin, understanding patient pain and skin injury; however, in the last experiment, a toothpick was utilized for safety purposes. Additionally, sharpness was dictated by estimating the penetration power of a probe into a known medium which intently replicates skin. A membrane of uniform thickness was held under constant strain and was repositioned to permit numerous tests to be performed (Mecmesin et al., 2020). Additionally, a key part of the fixturing was to guarantee that the instrument did not flex during the test and that the angle was constantly the same in order to preserve the validity. Overall stimulus response was utilized to measure the initial reaction of an organism based on physical stimuli.
Preparation of Earthworms
The earthworms, L. terrestris, were obtained from the Carolina Biological Website (25/container). The earthworms were kept in a large container with compacted mouse pellets and a Sphagnum moss medium sprinkled with dandelion root tea leaves. The earthworms were separated into bins of groups of fifteen to ensure validity and accuracy within the results. Additionally, this allowed the earthworms to be separated and protected overnight when supervision was not present. The earthworms were organized into different categories based on the type of test administration method; clove oil concentration as shown in Table 1.
Published on 15/11/23
Submitted on 29/08/23
Volume 5, 2023
Licence: CC BY-NC-SA license
Are you one of the authors of this document?