m (JSanchez moved page Draft Sanchez Pinedo 168716148 to Du et al 1970a) |
m (Move page script moved page Du et al 1970a to Du et al 2022a) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | == Summary == | ||
+ | |||
+ | Bone mineral density (BMD) is one of the important parameters used to characterise bone quality. Clinically, the only recommended method - dual X-ray absorptiometry - can only evaluate a two-dimensional areal BMD. Currently, three-dimensional localised BMD information is absent. HR-pQCT enables the assessments of 3D microstructure down to trabecular bone. Therefore, in this study, a voxel-based density registration (VDR) method is proposed to analyse the longitudinal changes of trabecular-bone density distribution. The VDR techniques were evaluated based on a six-month longitudinal study of five postmenopausal women. The time effect on localised changes of trabecular-bone mineral density was visualized and variations between different anatomical regions were quantified for the first time. Different distributions between anatomical regions were found in bone mineral density of trabecular bone (vBMDtrab), with a change of vBMDtrab at medial region (-0.56%) significantly higher than | ||
+ | anterior (-1.58%) (p = 0.032). This study indicates that localised density changes might be used as a prior indicator for the effect of aging or other interventions. | ||
+ | |||
== Abstract == | == Abstract == | ||
<pdf>Media:Draft_Sanchez Pinedo_168716148658_abstract.pdf</pdf> | <pdf>Media:Draft_Sanchez Pinedo_168716148658_abstract.pdf</pdf> |
Bone mineral density (BMD) is one of the important parameters used to characterise bone quality. Clinically, the only recommended method - dual X-ray absorptiometry - can only evaluate a two-dimensional areal BMD. Currently, three-dimensional localised BMD information is absent. HR-pQCT enables the assessments of 3D microstructure down to trabecular bone. Therefore, in this study, a voxel-based density registration (VDR) method is proposed to analyse the longitudinal changes of trabecular-bone density distribution. The VDR techniques were evaluated based on a six-month longitudinal study of five postmenopausal women. The time effect on localised changes of trabecular-bone mineral density was visualized and variations between different anatomical regions were quantified for the first time. Different distributions between anatomical regions were found in bone mineral density of trabecular bone (vBMDtrab), with a change of vBMDtrab at medial region (-0.56%) significantly higher than anterior (-1.58%) (p = 0.032). This study indicates that localised density changes might be used as a prior indicator for the effect of aging or other interventions.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.293
Licence: CC BY-NC-SA license
Are you one of the authors of this document?