(Created blank page) |
m (Move page script moved page Kristoffersen et al 1970a to Kristoffersen et al 2022a) |
||
(4 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | |||
+ | ==Summary== | ||
+ | A 3D fluid-structure interaction (FSI) code is under development. The fluid domain (Navier-Stokes) solver will employ a sharp interface ghost node immersed boundary method (IBM) to apply the boundary conditions at fluid-solid interfaces. The Navier-Stokes (N-S) solver has been verified using a classic Poiseuille channel flow. The current version of the immersed boundary method is being tested by solving a heat conduction problem. The order of accuracy of the IBM was shown to be just above second order. | ||
+ | |||
+ | == Abstract == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_363010084538_abstract.pdf</pdf> | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_363010084538_paper.pdf</pdf> |
A 3D fluid-structure interaction (FSI) code is under development. The fluid domain (Navier-Stokes) solver will employ a sharp interface ghost node immersed boundary method (IBM) to apply the boundary conditions at fluid-solid interfaces. The Navier-Stokes (N-S) solver has been verified using a classic Poiseuille channel flow. The current version of the immersed boundary method is being tested by solving a heat conduction problem. The order of accuracy of the IBM was shown to be just above second order.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.199
Licence: CC BY-NC-SA license
Are you one of the authors of this document?