m (Move page script moved page Colombo et al 1970a to Colombo et al 2022a) |
|
(One intermediate revision by one other user not shown) | |
(No difference)
|
The aim of this work is to contribute to the development of a high-order accurate discretization that is entropy conserving and entropy stable both in space and in time. To do this, the general framework is based on a high-order accurate discontinuous Galerkin (dG) method in space with entropy working variables, several entropy conservative and stable numerical fluxes and an entropy conserving modified Crank-Nicolson method. We present the first results, obtained with the discretizations here proposed, for two bi-dimensional unsteady viscous test-case: the Taylor-Green vortex and the double shear layer.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.008
Licence: CC BY-NC-SA license
Are you one of the authors of this document?