m (Move page script moved page Ruda et al 1970a to Ruda et al 2022a) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 6: | Line 6: | ||
== Abstract == | == Abstract == | ||
<pdf>Media:Draft_Sanchez Pinedo_2520567641634_abstract.pdf</pdf> | <pdf>Media:Draft_Sanchez Pinedo_2520567641634_abstract.pdf</pdf> | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_2520567641634_paper.pdf</pdf> |
Graphics cards that are equipped with Tensor Core units designed for AI applications, for example the NVIDIA Ampere A100, promise very high peak rates concerning their computing power (156 TFLOP/s in single and 312 TFLOP/s in half precision in the case of the A100). This is only achieved when performing arithmetically intensive operations such as dense matrix multiplications in the aforementioned lower precision, which is an obstacle when trying to use this hardware for solving linear systems arising from PDEs discretized with the finite element method. In previous works, we delivered a proof of concept that the predecessor of the A100, the V100 and its Tensor Cores, can be exploited to a great extent when solving Poisson's equation on the unit square if a hardware-oriented direct solver based on prehandling via hierarchical finite elements and a Schur complement approach is used. In this work, using numerical results on an A100 graphics card, we show that the method also achieves a very high performance if Poisson's equation, which is discretized by linear finite elements, is solved on a more complex domain corresponding to a flow around a square configuration.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Science Computing, 2022
DOI: 10.23967/eccomas.2022.292
Licence: CC BY-NC-SA license
Are you one of the authors of this document?