m (Move page script moved page Ponsin Lozano 1970a to Ponsin Lozano 2022a)
 
(3 intermediate revisions by one other user not shown)
Line 3: Line 3:
  
 
In this paper, we describe the numerical simulations carried out within the H2020 UHURA project of the turbulent unsteady flow generated during the motion of a Krueger device for laminar wings using a commercial lattice Boltzmann solver based on a Wall-Modelled LES approach. The simulations are focused on reproducing one of the experimental test cases carried out in the ONERA-L1 wind tunnel during the UHURA project. The numerical method and the simulation setup are described. The simulation results are compared with the high-quality experimental data obtained in the ONERA-L1 wind tunnel in order to assess the accuracy of the predictions.
 
In this paper, we describe the numerical simulations carried out within the H2020 UHURA project of the turbulent unsteady flow generated during the motion of a Krueger device for laminar wings using a commercial lattice Boltzmann solver based on a Wall-Modelled LES approach. The simulations are focused on reproducing one of the experimental test cases carried out in the ONERA-L1 wind tunnel during the UHURA project. The numerical method and the simulation setup are described. The simulation results are compared with the high-quality experimental data obtained in the ONERA-L1 wind tunnel in order to assess the accuracy of the predictions.
 +
 +
== Abstract ==
 +
<pdf>Media:Draft_Sanchez Pinedo_4087306382213_abstract.pdf</pdf>
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_4087306382213_paper.pdf</pdf>

Latest revision as of 16:06, 25 November 2022

Summary

In this paper, we describe the numerical simulations carried out within the H2020 UHURA project of the turbulent unsteady flow generated during the motion of a Krueger device for laminar wings using a commercial lattice Boltzmann solver based on a Wall-Modelled LES approach. The simulations are focused on reproducing one of the experimental test cases carried out in the ONERA-L1 wind tunnel during the UHURA project. The numerical method and the simulation setup are described. The simulation results are compared with the high-quality experimental data obtained in the ONERA-L1 wind tunnel in order to assess the accuracy of the predictions.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.163
Licence: CC BY-NC-SA license

Document Score

0

Views 9
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?