m (Move page script moved page Brokmann et al 1970a to Brokmann et al 2022a) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 6: | Line 6: | ||
== Abstract == | == Abstract == | ||
<pdf>Media:Draft_Sanchez Pinedo_1093464641894_abstract.pdf</pdf> | <pdf>Media:Draft_Sanchez Pinedo_1093464641894_abstract.pdf</pdf> | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_1093464641894_paper.pdf</pdf> |
In accidents involving cars with pedestrians, the impact of the head on structural parts of the vehicle takes a significant risk of injury. If the head hits the windscreen, the injury is highly influenced by glass fracture. In pedestrian protection tests, a head impactor is shot on the windscreen while the resultant acceleration at the COG of the head is measured. To assess the risk of fatal or serious injury, a head injury criterion (HIC) as an explicit function of the measured acceleration can be determined. The braking strength of glass which has a major impact on the head acceleration, however, is not deterministic but depends on production-related micro-cracks on the glass surface as well as on the loading rate. The aim of the present paper is to show a pragmatic method, how to include the stochastic failure of glass in crash and impact simulations. The methodology includes a fracture mechanical model for the strain rate-dependent failure of glass, the experimental determination of the glass strength for the different areas of a windscreen (surface, edge, and screen-printing area), the statistical evaluation of the experimental data and the computation of a HIC probability distribution by stochastic simulation.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.260
Licence: CC BY-NC-SA license
Are you one of the authors of this document?