m (Move page script moved page Frei et al 1970a to Frei et al 2022a)
 
(One intermediate revision by one other user not shown)
(No difference)

Latest revision as of 17:06, 25 November 2022

Summary

In order to make the numerical simulation of atherosclerotic plaque growth feasible, a temporal homogenization approach is employed. The resulting macro-scale problem for the plaque growth can be further accelerated by using parallel time integration schemes, such as the parareal algorithm. However, the parallel scalability is dominated by the computational cost of the coarse propagator. Therefore, in this paper, an interpolation-based coarse propagator, which uses growth values from previously computed micro-scale problems, is introduced. For a simple model problem, it is shown that this approach reduces both the computational work for a single parareal iteration as well as the required number of parareal iterations.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Applied Mathematics, 2022
DOI: 10.23967/eccomas.2022.015
Licence: CC BY-NC-SA license

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?