(Created blank page)
 
m (Move page script moved page Gibson Yano 1970a to Gibson Yano 2022a)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
                               
 +
==Summary==
  
 +
We present a framework to accelerate optimization of problems where the objective function is governed by a nonlinear partial differential equation (PDE) using projection-based reduced-order models (ROMs) and a trust-region (TR) method. To reduce the cost of objective function evaluations by several orders of magnitude, we replace the underlying full-order model (FOM) with a series of hyperreduced ROMs (HROMs) constructed on-the-fly. Each HROM is equipped with an online-efficient a posteriori error estimator, which is used to define a TR. Hyperreduction is performed following a goal-oriented empirical quadrature procedure, which guarantees first-order consistency of the HROM with the FOM at the TR center. This ensures the optimizer converges to a local minimum of the underlying FOM problem. We demonstrate the framework through optimization of a nonlinear thermal fin and pressure-matching inverse design of an airfoil under Euler flow and Reynolds-averaged Navier-Stokes flow.
 +
 +
== Abstract ==
 +
<pdf>Media:Draft_Sanchez Pinedo_981609077570_abstract.pdf</pdf>
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_981609077570_paper.pdf</pdf>

Latest revision as of 16:06, 25 November 2022

Summary

We present a framework to accelerate optimization of problems where the objective function is governed by a nonlinear partial differential equation (PDE) using projection-based reduced-order models (ROMs) and a trust-region (TR) method. To reduce the cost of objective function evaluations by several orders of magnitude, we replace the underlying full-order model (FOM) with a series of hyperreduced ROMs (HROMs) constructed on-the-fly. Each HROM is equipped with an online-efficient a posteriori error estimator, which is used to define a TR. Hyperreduction is performed following a goal-oriented empirical quadrature procedure, which guarantees first-order consistency of the HROM with the FOM at the TR center. This ensures the optimizer converges to a local minimum of the underlying FOM problem. We demonstrate the framework through optimization of a nonlinear thermal fin and pressure-matching inverse design of an airfoil under Euler flow and Reynolds-averaged Navier-Stokes flow.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Science Computing, 2022
DOI: 10.23967/eccomas.2022.035
Licence: CC BY-NC-SA license

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?