(Created blank page)
 
m (Move page script moved page Schneider-Jung et al 1970a to Schneider-Jung et al 2022a)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
                               
 +
==Summary==
  
 +
In this work, we propose an efficient methodology for the assessment of noise transmission through cables and hoses. An interactive simulation with a geometrically exact Cosserat rod enables simple and fast modelling of various configurations. Subsequently, we linearise the equations of motion at the static equilibrium for given boundary conditions and, using the resulting system matrices, compute the mechanical impedance matrix. The computation result, i.e. the impedance matrix, is available within seconds. The impedance matrix either can be used to compute reaction forces for given excitation or, if the excitation is unknown, allows to analyse the transmission of noise by looking at single matrix elements. The latter is especially useful in early, purely virtual development phases.
 +
 +
== Abstract ==
 +
<pdf>Media:Draft_Sanchez Pinedo_1578656181247_abstract.pdf</pdf>
 +
 +
== Full Paper ==
 +
<pdf>Media:Draft_Sanchez Pinedo_1578656181247_paper.pdf</pdf>

Latest revision as of 16:06, 25 November 2022

Summary

In this work, we propose an efficient methodology for the assessment of noise transmission through cables and hoses. An interactive simulation with a geometrically exact Cosserat rod enables simple and fast modelling of various configurations. Subsequently, we linearise the equations of motion at the static equilibrium for given boundary conditions and, using the resulting system matrices, compute the mechanical impedance matrix. The computation result, i.e. the impedance matrix, is available within seconds. The impedance matrix either can be used to compute reaction forces for given excitation or, if the excitation is unknown, allows to analyse the transmission of noise by looking at single matrix elements. The latter is especially useful in early, purely virtual development phases.

Abstract

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Full Paper

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.103
Licence: CC BY-NC-SA license

Document Score

0

Views 10
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?