m (Move page script moved page Stadt Layton 1970a to Stadt Layton 2022a) |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
During pregnancy, major adaptations in renal morphology, hemodynamics, and transport occur to achieve the volume and electrolyte retention required in pregnancy. These complex changes can appear counterintuitive when considered in isolation. Additionally, in pregnancies complicated by a disorder, such as gestational hypertension, kidney function may be altered from normal pregnancy. To analyze how renal function is altered during pregnancy, we developed epithelial cell-based computational models of solute and water transport in a nephron of the kidney for a rat in midand late-pregnancy. The model represents known pregnancy-induced changes in renal transporters, including reduction in proximal tubule and medullary loop transporters. The pregnant rat nephron models predicted urine output and excretion consistent with measured values. Additionally, we simulated the inhibition and knockout of the ENaC and H+-K+-ATPase transporters. | During pregnancy, major adaptations in renal morphology, hemodynamics, and transport occur to achieve the volume and electrolyte retention required in pregnancy. These complex changes can appear counterintuitive when considered in isolation. Additionally, in pregnancies complicated by a disorder, such as gestational hypertension, kidney function may be altered from normal pregnancy. To analyze how renal function is altered during pregnancy, we developed epithelial cell-based computational models of solute and water transport in a nephron of the kidney for a rat in midand late-pregnancy. The model represents known pregnancy-induced changes in renal transporters, including reduction in proximal tubule and medullary loop transporters. The pregnant rat nephron models predicted urine output and excretion consistent with measured values. Additionally, we simulated the inhibition and knockout of the ENaC and H+-K+-ATPase transporters. | ||
+ | |||
+ | == Abstract == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_995989542354_abstract.pdf</pdf> | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_995989542354_paper.pdf</pdf> |
During pregnancy, major adaptations in renal morphology, hemodynamics, and transport occur to achieve the volume and electrolyte retention required in pregnancy. These complex changes can appear counterintuitive when considered in isolation. Additionally, in pregnancies complicated by a disorder, such as gestational hypertension, kidney function may be altered from normal pregnancy. To analyze how renal function is altered during pregnancy, we developed epithelial cell-based computational models of solute and water transport in a nephron of the kidney for a rat in midand late-pregnancy. The model represents known pregnancy-induced changes in renal transporters, including reduction in proximal tubule and medullary loop transporters. The pregnant rat nephron models predicted urine output and excretion consistent with measured values. Additionally, we simulated the inhibition and knockout of the ENaC and H+-K+-ATPase transporters.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Fluid Dynamics, 2022
DOI: 10.23967/eccomas.2022.131
Licence: CC BY-NC-SA license
Are you one of the authors of this document?