m (Move page script moved page Kissami et al 1970a to Kissami et al 2022a) |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 3: | Line 3: | ||
The present paper describes a parallel unstructured-mesh Plasma simulation code based on Finite Volume method. The code dynamically refines and coarses mesh for accurate resolution of the different features regarding the electron density. Our purpose is to examine the performance of a new Parallel Adaptive Mesh Refinement (PAMR) procedure introduced on the ADAPT platform, which resolves of a relatively complicated system coupling the flow partial differential equations to the Poisson's equation. The implementation deals with the MUMPS parallel multi-frontal direct solver and mesh partitioning methods using METIS to improve the performance of the framework. The standard MPI is used to establish communication between processors. Performance analysis of the PAMR procedure shows the efficiency and the potential of the method for the propagation equations of ionization waves. | The present paper describes a parallel unstructured-mesh Plasma simulation code based on Finite Volume method. The code dynamically refines and coarses mesh for accurate resolution of the different features regarding the electron density. Our purpose is to examine the performance of a new Parallel Adaptive Mesh Refinement (PAMR) procedure introduced on the ADAPT platform, which resolves of a relatively complicated system coupling the flow partial differential equations to the Poisson's equation. The implementation deals with the MUMPS parallel multi-frontal direct solver and mesh partitioning methods using METIS to improve the performance of the framework. The standard MPI is used to establish communication between processors. Performance analysis of the PAMR procedure shows the efficiency and the potential of the method for the propagation equations of ionization waves. | ||
+ | |||
+ | == Abstract == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_2618844522167_abstract.pdf</pdf> | ||
+ | |||
+ | == Full Paper == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_2618844522167_paper.pdf</pdf> |
The present paper describes a parallel unstructured-mesh Plasma simulation code based on Finite Volume method. The code dynamically refines and coarses mesh for accurate resolution of the different features regarding the electron density. Our purpose is to examine the performance of a new Parallel Adaptive Mesh Refinement (PAMR) procedure introduced on the ADAPT platform, which resolves of a relatively complicated system coupling the flow partial differential equations to the Poisson's equation. The implementation deals with the MUMPS parallel multi-frontal direct solver and mesh partitioning methods using METIS to improve the performance of the framework. The standard MPI is used to establish communication between processors. Performance analysis of the PAMR procedure shows the efficiency and the potential of the method for the propagation equations of ionization waves.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Science Computing, 2022
DOI: 10.23967/eccomas.2022.215
Licence: CC BY-NC-SA license
Are you one of the authors of this document?