(Created blank page)
 
Line 1: Line 1:
 +
                               
 +
==Summary==
  
 +
When modelling slender bodies made of composite materials as beams, homogenized stiffness coefficients must be obtained. In [2, 3], analytic expressions for these are obtained by comparing the solutions of some Saint-Venant extension, bending and torsion 3D linear elasticity problems with their corresponding beam theory counterparts. In [2], the authors provide general expressions for the determination of these coefficients for multilayered beams. The present work consists in the study of a homogenization procedure of the stiffness coefficients for circular cross-sections with two layers. This will help in the study of the constitutive behavior of unloaded shafts of endoscopes since their cross-section could be studied as a simplified model of a three-layers hollow circular cross-section. In preparation of this geometry, results of an experimental campaign carried out at KARL STORZ GmbH & Co. KG (Tallinn, Estonia) are presented in a second part of this paper. The purpose of the testing was the experimental characterization of the torsional stiffness of such devices.

Revision as of 10:39, 23 November 2022

Summary

When modelling slender bodies made of composite materials as beams, homogenized stiffness coefficients must be obtained. In [2, 3], analytic expressions for these are obtained by comparing the solutions of some Saint-Venant extension, bending and torsion 3D linear elasticity problems with their corresponding beam theory counterparts. In [2], the authors provide general expressions for the determination of these coefficients for multilayered beams. The present work consists in the study of a homogenization procedure of the stiffness coefficients for circular cross-sections with two layers. This will help in the study of the constitutive behavior of unloaded shafts of endoscopes since their cross-section could be studied as a simplified model of a three-layers hollow circular cross-section. In preparation of this geometry, results of an experimental campaign carried out at KARL STORZ GmbH & Co. KG (Tallinn, Estonia) are presented in a second part of this paper. The purpose of the testing was the experimental characterization of the torsional stiffness of such devices.

Back to Top
GET PDF

Document information

Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22

Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.139
Licence: CC BY-NC-SA license

Document Score

0

Views 18
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?