Line 3: | Line 3: | ||
Within this contribution, we discuss additional theoretical as well as numerical aspects of the material model developed in [1, 2], where a `two-surface' damage-plasticity model is proposed accounting for induced damage anisotropy by means of a second order damage tensor. The constitutive framework is stated in terms of logarithmic strain measures, while the total strain is additively decomposed into elastic and plastic parts. Moreover, a novel gradientextension based on the damage tensor's invariants is presented using the micromorphic approach introduced in [3]. Finally, going beyond the numerical examples presented in [1, 2], we study the model's ability to cure mesh-dependency in a three-dimensional setup. | Within this contribution, we discuss additional theoretical as well as numerical aspects of the material model developed in [1, 2], where a `two-surface' damage-plasticity model is proposed accounting for induced damage anisotropy by means of a second order damage tensor. The constitutive framework is stated in terms of logarithmic strain measures, while the total strain is additively decomposed into elastic and plastic parts. Moreover, a novel gradientextension based on the damage tensor's invariants is presented using the micromorphic approach introduced in [3]. Finally, going beyond the numerical examples presented in [1, 2], we study the model's ability to cure mesh-dependency in a three-dimensional setup. | ||
+ | |||
+ | == Abstract == | ||
+ | <pdf>Media:Draft_Sanchez Pinedo_313356941446_abstract.pdf</pdf> |
Within this contribution, we discuss additional theoretical as well as numerical aspects of the material model developed in [1, 2], where a `two-surface' damage-plasticity model is proposed accounting for induced damage anisotropy by means of a second order damage tensor. The constitutive framework is stated in terms of logarithmic strain measures, while the total strain is additively decomposed into elastic and plastic parts. Moreover, a novel gradientextension based on the damage tensor's invariants is presented using the micromorphic approach introduced in [3]. Finally, going beyond the numerical examples presented in [1, 2], we study the model's ability to cure mesh-dependency in a three-dimensional setup.
Published on 24/11/22
Accepted on 24/11/22
Submitted on 24/11/22
Volume Computational Solid Mechanics, 2022
DOI: 10.23967/eccomas.2022.009
Licence: CC BY-NC-SA license
Are you one of the authors of this document?