(Created page with " == Abstract == pproximately 70,000 Spanish off-stream reservoirs, many of them irrigation ponds, need to be evaluated in terms of their potential hazard to comply with the n...") |
m (Nsilva moved page Draft Silva 268023065 to Silva et al 2022b) |
(No difference)
|
pproximately 70,000 Spanish off-stream reservoirs, many of them irrigation ponds, need to be evaluated in terms of their potential hazard to comply with the new national Regulation of the Hydraulic Public Domain. This requires a great engineering effort to evaluate different scenarios with two-dimensional hydraulic models, for which many owners lack the necessary resources. This work presents a simplified methodology based on machine learning to identify risk zones at any point in the vicinity of an off-stream reservoir without the need to elaborate and run full two-dimensional hydraulic models. A predictive model based on random forest was created from datasets including the results of synthetic cases computed with an automatic tool based on the two-dimensional numerical software Iber. Once fitted, the model provided an estimate on the potential hazard considering the physical characteristics of the structure, the surrounding terrain and the vulnerable locations. Two approaches were compared for balancing the dataset: the synthetic minority oversampling and the random undersampling. Results from the random forest model adjusted with the random undersampling technique showed to be useful for the estimation of risk zones. On a real application test the simplified method achieved 91% accuracy.
Published on 01/01/2022
DOI: 10.3390/w14152416
Licence: CC BY-NC-SA license