(6. Discussion about rod counting method)
 
(37 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
<!-- metadata commented in wiki content
 
<!-- metadata commented in wiki content
==A comparison between “rod counting” and “box counting” methods in linear fractal dimensions measurements.label1==
+
==A comparison between “rod counting” and “box counting” methods in linear fractal dimensions measurements==
  
'''C.R.  Acosta, F.  Peñuñuri, O. Carvente, G. Rivadeneyra, I. Martín
+
'''C. R.  Acosta1, F.  Peñuñuri 1, O. Carvente 1, G. Rivadeneyra 1, I. Martín 1'''
 
-->
 
-->
 
==Abstract==
 
==Abstract==
Line 8: Line 8:
 
In this work, the “rod counting” method is reviewed in comparison with the “box counting” method applied to linear measurements on irregular figures. Both methods are applied in measurements of fractal dimension of some knowing fractals. Results shows that the “rod counting” method is more accurate in linear measurements. Later the method is applied in a Mandelbrot fractal figure to measure its perimeter fractal dimension.
 
In this work, the “rod counting” method is reviewed in comparison with the “box counting” method applied to linear measurements on irregular figures. Both methods are applied in measurements of fractal dimension of some knowing fractals. Results shows that the “rod counting” method is more accurate in linear measurements. Later the method is applied in a Mandelbrot fractal figure to measure its perimeter fractal dimension.
  
'''keywords''': Rod Counting, Box Counting, Mandelbrot fractal, Fractal dimension, ImageJ
+
'''Keywords''': Rod counting, box counting, Mandelbrot fractal, fractal dimension, ImageJ
  
Facultad de Ingeniería de la Universidad Autónoma de Yucatán
+
==1. Introduction==
  
organization = Applied Physics Department, Facultad de Ingeniería de la Universidad Autónoma de Yucatán            addressline = Av. Industrias no contaminates por anillo periférico norte S/N              city = Mérida            postcode = 97310              state = Yucatán            country = Mexico
+
When Benoit Mandelbrot initially refers to the method of Lewis Fry Richardson <span id='citeF-1'></span><span id='citeF-2'></span><span id='citeF-3'></span>[[#cite-1|[1,2,3]]] on the measurements of the coast lines (<math display="inline">L</math>) of Britain or borders of Germany, Spain, etc., he does so using the idea of “a compass opening” or rods of the same size (<math display="inline">s</math>) in a first measurement, and that later, changes the size of the rods to measure the coastline or border again (Richardson's method).
  
==1 Introduction==
+
Then, when plotting these results wit <math display="inline">\ln (L)</math> on the vertical axis and <math display="inline">\ln (s)</math> on the horizontal axis, it is described a straight line when a linear fit of the measurements is made and the Hausdorff-Besicovitch dimension is related with the slope of the line.
  
When Benoit Mandelbrot initially refers to the method of Lewis Fry Richardson <span id='citeF-1'></span><span id='citeF-2'></span><span id='citeF-3'></span>[[#cite-1|[1,2,3]]] on the measurements of the coast lines of Britain or borders of Germany, Spain, etc., he does so using the idea of “a compass opening” or rods of the same size in a first measurement, and that later, changes the size of the rods to measure the coastline or border again (Richardson's method), noting that the total length (L) increases each time the rod used is smaller (s), but when plotting these results wit log(L) on the vertical axis and log(s) on the horizontal axis, it is described a straight line when a linear fit of the measurements is made. Mandelbrot also refers to the fact that the measurements made in 2-H, in the case of self-similarity, coincide with the Hausdorff-Besicovitch dimension <span id='citeF-2'></span>[[#cite-2|[2]]]. However, the comparison that Mandelbrot makes in his 1967 article <span id='citeF-1'></span>[[#cite-1|[1]]], for linear measurements he does with variants of the Koch curve and whose statistical self-similarity is the Hausdorff-Besicovitch fractal dimension.
+
Mandelbrot also refers to the fact that the measurements made in 2-H, in the case of self-similarity, coincide with the Hausdorff-Besicovitch dimension <span id='citeF-2'></span>[[#cite-2|[2]]]. However, the comparison that Mandelbrot makes in his 1967 article <span id='citeF-1'></span>[[#cite-1|[1]]], for linear measurements he does with variants of the Koch curve and whose statistical self-similarity is the Hausdorff-Besicovitch fractal dimension.
  
The fractal dimension method is used in medicine to study breast cancer, but the use of this technique is done by analysing the contour of an image generated in a mammography and periodically reviewing the evolution of the disease through the revision of the perimeter of the updated images <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]]. The same procedure is used for recognition of plants <span id='citeF-6'></span>[[#cite-6|[6]]] through the study of their leaves (analisys of the contour and veins).
+
The fractal dimension method are used in medicine to study breast cancer, but the use of this technique is done by analysing the contour of an image generated in a mammography and periodically reviewing the evolution of the disease through the revision of the perimeter of the updated images <span id='citeF-4'></span><span id='citeF-5'></span>[[#cite-4|[4,5]]]. The same procedure is used for recognition of plants <span id='citeF-6'></span>[[#cite-6|[6]]] through the study of their leaves (analysis of the contour and veins).
  
The “box counting” method has been used to measure the fractal dimension of areas as well as lengths, this consists of building a box with side ``<math display="inline">\xi _k</math>'' and counting the sides or points that remain inside the box, the relation of powers for any dimension is (eq. [[#eq-1|1]]):
+
The “box counting” method has been used to measure the fractal dimension of areas as well as lengths, this consists of building a box with side ``<math display="inline">\xi _k</math> and counting the points that remain inside the box, the relation of powers for any dimension is (Eq. [[#eq-1|(1)]]):
  
 
<span id="eq-1"></span>
 
<span id="eq-1"></span>
Line 32: Line 32:
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
 
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
 
|}
 
|}
 +
 +
where <math display="inline">L</math> is the perimeter length <math display="inline">\xi _k</math> is the scale, <math display="inline">A</math> is the area, <math display="inline">V</math> is the volume, <math display="inline">N</math> is the number of “rods”, “boxes” or “cubes” used, and “D” is the Hausdorff-Besicovitch dimension.
  
 
Applying the relationship only for longitudinal measurements, let us compare the results given by the measurement made using boxes (Box Counting) with that made through rods (Rod Counting). The measurements for the counting of boxes will be carried out with the “ImageJ” application <span id='citeF-7'></span>[[#cite-7|[7]]] that is part of a “SciJava OSS” free software project using the “FracLac” plugin and the counting of rods with the “GeoGebra” app <span id='citeF-8'></span>[[#cite-8|[8]]].
 
Applying the relationship only for longitudinal measurements, let us compare the results given by the measurement made using boxes (Box Counting) with that made through rods (Rod Counting). The measurements for the counting of boxes will be carried out with the “ImageJ” application <span id='citeF-7'></span>[[#cite-7|[7]]] that is part of a “SciJava OSS” free software project using the “FracLac” plugin and the counting of rods with the “GeoGebra” app <span id='citeF-8'></span>[[#cite-8|[8]]].
Line 37: Line 39:
 
The box counting technique has been reviewed by some authors and an optimization algorithm has been proposed <span id='citeF-9'></span>[[#cite-9|[9]]], however the results obtained when applying the procedure are close to the rod counting method, but the latter being simpler in its implementation.
 
The box counting technique has been reviewed by some authors and an optimization algorithm has been proposed <span id='citeF-9'></span>[[#cite-9|[9]]], however the results obtained when applying the procedure are close to the rod counting method, but the latter being simpler in its implementation.
  
==2 Calculation of the fractal dimension with the Richardson method.==
+
==2. Calculation of the fractal dimension with the Richardson method==
  
To carry out this comparison we will use the Koch curve, whose Hausdorff-Besicovitch fractal dimension is known (<math display="inline">D=1.26186</math>), <span id='citeF-10'></span><span id='citeF-11'></span>[[#cite-10|[10,11]]]. Figure ([[#img-1|1]]) shows five moments of construction of the Koch curve, which was generated in GeoGebra <span id='citeF-8'></span>[[#cite-8|[8]]].
+
To carry out this comparison we will use the Koch curve, whose Hausdorff-Besicovitch fractal dimension is known (<math display="inline">D=1.26186</math>), <span id='citeF-10'></span><span id='citeF-11'></span>[[#cite-10|[10,11]]]. [[#img-1|Figure 1]] shows five moments of construction of the Koch curve, which was generated in GeoGebra <span id='citeF-8'></span>[[#cite-8|[8]]].
  
 
<div id='img-1'></div>
 
<div id='img-1'></div>
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
 
|-
 
|-
|[[Image:Draft_Acosta_541201686-Fig1-Chaos.png|364px|Koch curve generated in GeoGebra.]]
+
|style="padding:10px;"|[[Image:Review_986628909362-Fig1-Chaos.png|364px|Koch curve generated in GeoGebra.]]
 
|- style="text-align: center; font-size: 75%;"
 
|- style="text-align: center; font-size: 75%;"
| colspan="1" | '''Figure 1:''' Koch curve generated in GeoGebra.
+
| colspan="1" style="padding:10px;"| '''Figure 1'''. Koch curve generated in GeoGebra
 
|}
 
|}
  
Arranging these construction moments in table [[#table-1|1]] following the methodology proposed by Richardson, we obtain the straight line whose slope is the Hausdorff-Besicovitch fractal dimension <span id='citeF-1'></span>[[#cite-1|[1]]], <span id='citeF-12'></span>[[#cite-12|[12]]]-<span id='citeF-17'></span>[[#cite-17|[17]]].
 
  
 +
Arranging these construction moments in  [[#table-1|Table 1]] following the methodology proposed by Richardson, we obtain the straight line whose slope is the Hausdorff-Besicovitch fractal dimension <span id='citeF-1'></span>[[#cite-1|[1]]], <span id='citeF-12'></span>[[#cite-12|[12]]]-<span id='citeF-18'></span>[[#cite-18|[18]]].
  
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
<div class="center" style="font-size: 75%;">'''Table 1'''. Richardson's method used to calculate the statistical self-similar fractal dimension of Koch's curve</div>
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Richardson's method used to calculate the statistical self-similar fractal dimension of Koch's curve.
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  L. Rod (<math display="inline">a_k</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | Scale (<math display="inline">\xi _k = a_k/a_1</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | N. Rods <math display="inline">N\left(\xi _k\right)</math>
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  3
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 4
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_1\left(0, 1.38629\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1/3
+
| style="border-left: 2px solid;border-right: 2px solid;" | 16
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_2\left(1.09861, 2.77259\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  1/3
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1/9
+
| style="border-left: 2px solid;border-right: 2px solid;" | 64
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_3\left(2.19732, 4.15888\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  1/9
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1/27
+
| style="border-left: 2px solid;border-right: 2px solid;" | 256
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_4\left(3.2954, 5.54518\right)</math>
+
|- style="border-top: 2px solid;border-bottom: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  1/27
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1/81
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1024
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(4.39445, 6.93147\right)</math>
+
  
 +
<div id='table-1'></div>
 +
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"
 +
|-style="text-align:center"
 +
!  L. Rod <math display="inline">\left(a_k\right)</math> !! Scale <math display="inline">\left(\xi _k = a_k/a_1\right)</math> !! N. Rods <math display="inline">N(\xi _k)</math> !! <math>P_k\left(\ln (1/\xi _k), \ln (N)\right)</math>
 +
|- style="text-align:center"
 +
|  3
 +
|  1
 +
|  4
 +
| <math>P_1 \left(0, 1.38629\right)</math>
 +
|- style="text-align:center"
 +
|  1
 +
|  1/3
 +
|  16
 +
|  <math>P_2\left(1.09861, 2.77259\right)</math>
 +
|- style="text-align:center"
 +
|  1/3
 +
|  1/9
 +
|  64
 +
| <math>P_3\left(2.19732, 4.15888\right)</math>
 +
|- style="text-align:center"
 +
|  1/9
 +
| 1/27
 +
|  256
 +
|  <math>P_4\left(3.2954, 5.54518\right)</math>
 +
|- style="text-align:center"
 +
|  1/27
 +
|  1/81
 +
|  1024
 +
|  <math>P_5\left(4.39445, 6.93147\right)</math>
 
|}
 
|}
  
Linear fit of the data in the last column of table [[#table-1|1]] leads us to the linear function (eq. [[#eq-2|2]]):
+
 
 +
Linear fit of the data in the last column of [[#table-1|Table 1]] leads us to the linear function (Eq.[[#eq-2|(2)]]):
  
 
<span id="eq-2"></span>
 
<span id="eq-2"></span>
Line 100: Line 101:
 
|}
 
|}
  
Where it is observed that the slope of this function is the fractal dimension calculated based on the Hausdorff-Besicovitch description for Koch's curve, but obtained with Richardson's procedure (fig. [[#img-2|2]]).
+
where it is observed that the slope of this function is the fractal dimension calculated based on the Hausdorff-Besicovitch description for Koch's curve, but obtained with Richardson's procedure ([[#img-2|Figure 2]]).
  
 
<div id='img-2'></div>
 
<div id='img-2'></div>
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 50%;"
 
|-
 
|-
|[[Image:Draft_Acosta_541201686-Fig2-Chaos.png|215px|Fractal dimension of Koch's curve measured following Richardson's method with the “rod” sizes equals to the original size used in every step of construction.]]
+
|style="padding:10px;"| [[Image:Review_986628909362-Fig2-Chaos.png|315px|Fractal dimension of Koch's curve measured following Richardson's method with the “rod” sizes equals to the original size used in every step of construction.]]
 
|- style="text-align: center; font-size: 75%;"
 
|- style="text-align: center; font-size: 75%;"
| colspan="1" | '''Figure 2:''' Fractal dimension of Koch's curve measured following Richardson's method with the “rod” sizes equals to the original size used in every step of construction.
+
| colspan="1" style="padding:10px;"| '''Figure 2'''. Fractal dimension of Koch's curve measured following Richardson's method with the “rod” sizes equals to the original size used in every step of construction
 
|}
 
|}
  
Geometric fractals of a) Hilbert's curve, b) Koch 85's curve and c) the Cantor middle-thirds set were also generated in GeoGebra <span id='citeF-8'></span>[[#cite-8|[8]]], whose fractal dimensions were calculated with the rod counting method, which are shown in table [[#table-2|2]]. These figures were generated and measured since their fractal dimension are calculated with the perimeter or contour procedure. There are other fractal figures that can be generated, such as the Sierpinsky's triangle and carpet and some others, but since areas are generated in these elements, it is more convenient to use the box counting method there.
 
  
 +
Geometric fractals of a) Hilbert's curve, b) Koch 85's curve and c) the Cantor middle-thirds set were also generated in GeoGebra <span id='citeF-8'></span>[[#cite-8|[8]]], whose fractal dimensions were calculated with the rod counting method, which are shown in  [[#table-2|Table 2]]. These figures were generated and measured since their fractal dimension are calculated with the perimeter or contour procedure. There are other fractal figures that can be generated, such as the Sierpinsky's triangle and carpet and some others, but since areas are generated in these elements, it is more convenient to use the box counting method there.
  
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
<div class="center" style="font-size: 75%;">'''Table 2'''. Richardson's method used to calculate the statistical self-similar fractal dimension of (a) Hilbrts's curve, (b) Koch 85's curve and (c) Cantor middle-thirds set</div>
|+ style="font-size: 75%;" |<span id='table-2'></span>Table. 2 Richardson's method used to calculate the statistical self-similar fractal dimension of a) Hilbrts's curve, b) Koch 85's curve and c) Cantor middle-thirds set.
+
 
|- style="border-top: 2px solid;"
+
<div id='table-2'></div>
| rowspan='10' style="border-left: 2px solid;border-right: 2px solid;" |
+
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"  
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
|-style="text-align:center"
 +
| rowspan='10' |
 +
{| class="floating_imageSCP" style="text-align: center; margin: 1em auto; width: 100%;max-width: 100%;"
 
|-
 
|-
|[[Image:Draft_Acosta_541201686-Hilbert.png|100px|]]
+
|[[Image:Review_986628909362-Hilbert.png|100px|]]
 
|}
 
|}
[[Image:Draft_Acosta_541201686-Hilbert.png|300px|Hilbert.png]]
+
[[Image:Review_986628909362-Hilbert.png|300px|Hilbert.png]]
| colspan='4' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | a) Hilbert's curve fractal <math>h\left(x\right)= 2.041x+1.2403</math>.
+
! colspan='4' style="text-align:center;" | (a) Hilbert's curve fractal <math>h\left(x\right)= 2.041x+1.2403</math>
 +
|-style="text-align:center"
 +
!  L. Rod <math display="inline">\left(a_k\right)</math>  !!  Scale <math display="inline">\left(\xi _k = a_k/a_1\right)</math> !!  N. Rods <math display="inline">N\left(\xi _k\right)</math> !!  <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
 +
|-style="text-align:center"
 +
|  4
 +
|  1
 +
| 3
 +
|  <math>P_1\left(0, 1.0986\right)</math>
 +
|-style="text-align:center"
 +
|  2
 +
|  0.5
 +
|  15
 +
|  <math>P_2\left(0.6931, 2.7081\right)</math>
 +
|-style="text-align:center"
 +
|  1
 +
|  0.25
 +
| 63
 +
| <math>P_3\left(1.3863, 4.1431\right)</math>
 +
|-style="text-align:center"
 +
| 0.5
 +
|  0.125
 +
|  255
 +
|  <math>P_4\left(2.0794, 5.5413\right)</math>
 +
|-style="text-align:center"
 +
|  0.25
 +
|  0.625
 +
|  1023
 +
|  <math>P_5\left(2.7726, 6.9305\right)</math>
 +
|-style="text-align:center"
 +
|  0.125
 +
|  0.0313
 +
|  4095
 +
|  <math>P_6\left(3.4657, 8.3175\right)</math>
 +
|-style="text-align:center"
 +
|  0.0625
 +
|  0.0156
 +
|  16383
 +
|  <math>P_7\left(4.1589, 9.7040\right)</math>
 +
|-style="text-align:center"
 +
|  0.0313
 +
|  0.0078
 +
| 65535
 +
| <math>P_8\left(4.8520, 11.0903\right)</math>
 +
|- style="text-align:center"
 +
| rowspan='8' |
 +
{| class="floating_imageSCP" style="text-align: center; margin: 1em auto; width: 100%;max-width: 100%;"
 
|-
 
|-
| style="border-left: 2px solid;border-right: 2px solid;" | L. Rod (<math display="inline">a_k</math>)
+
|[[Image:Review_986628909362-Koch85.png|100px|]]
| style="border-left: 2px solid;border-right: 2px solid;" | Scale (<math display="inline">\xi _k = a_k/a_1</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | N. Rods <math display="inline">N\left(\xi _k\right)</math>
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 4
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 3
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_1\left(0, 1.0986\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 2
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.5
+
| style="border-left: 2px solid;border-right: 2px solid;" | 15
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_2\left(0.6931, 2.7081\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.25
+
| style="border-left: 2px solid;border-right: 2px solid;" | 63
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_3\left(1.3863, 4.1431\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.5
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.125
+
| style="border-left: 2px solid;border-right: 2px solid;" | 255
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_4\left(2.0794, 5.5413\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.25
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.625
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1023
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(2.7726, 6.9305\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.125
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0313
+
| style="border-left: 2px solid;border-right: 2px solid;" | 4095
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_6\left(3.4657, 8.3175\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0625
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0156
+
| style="border-left: 2px solid;border-right: 2px solid;" | 16383
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_7\left(4.1589, 9.7040\right)</math>
+
|-
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0313
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0078
+
| style="border-left: 2px solid;border-right: 2px solid;" | 65535
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_8\left(4.8520, 11.0903\right)</math>
+
|- style="border-top: 2px solid;"
+
| rowspan='8' style="border-left: 2px solid;border-right: 2px solid;" |
+
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
|-
+
|[[Image:Draft_Acosta_541201686-Koch85.png|100px|]]
+
 
|}
 
|}
[[Image:Draft_Acosta_541201686-Koch85.png|300px|Koch85.png]]
+
[[Image:Review_986628909362-Koch85.png|300px|Koch85.png]]
| colspan='4' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | b) Koch 85's curve fractal <math>m\left(x\right)=1.785x+1.386 </math>.
+
colspan='4' style="text-aling:center;" | (b) Koch 85's curve fractal <math>m\left(x\right)=1.785x+1.386 </math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 4.1392  
+
| 4.1392  
| style="border-left: 2px solid;border-right: 2px solid;" | 1  
+
| 1  
| style="border-left: 2px solid;border-right: 2px solid;" | 4  
+
| 4  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_1\left(0, 1.3863\right)</math>
+
| <math>P_1\left(0, 1.3863\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 1.9037  
+
| 1.9037  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.4599  
+
| 0.4599  
| style="border-left: 2px solid;border-right: 2px solid;" | 16  
+
| 16  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_2\left(0.7767, 2.7726\right)</math>
+
| <math>P_2\left(0.7767, 2.7726\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8755  
+
| 0.8755  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.2115  
+
| 0.2115  
| style="border-left: 2px solid;border-right: 2px solid;" | 64  
+
| 64  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_3\left(1.5535, 4.1589\right)</math>
+
| <math>P_3\left(1.5535, 4.1589\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.4027  
+
| 0.4027  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0973  
+
| 0.0973  
| style="border-left: 2px solid;border-right: 2px solid;" | 256  
+
| 256  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_4\left(2.3301, 5.5452\right)</math>
+
| <math>P_4\left(2.3301, 5.5452\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.1852  
+
| 0.1852  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0447  
+
| 0.0447  
| style="border-left: 2px solid;border-right: 2px solid;" | 1024  
+
| 1024  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(3.1068, 6.9315\right)</math>
+
| <math>P_5\left(3.1068, 6.9315\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0852  
+
| 0.0852  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0206  
+
| 0.0206  
| style="border-left: 2px solid;border-right: 2px solid;" | 4096  
+
| 4096  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_6\left(3.8833, 8.3178\right)</math>
+
| <math>P_6\left(3.8833, 8.3178\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0392  
+
| 0.0392  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0095  
+
| 0.0095  
| style="border-left: 2px solid;border-right: 2px solid;" | 16384  
+
| 16384  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_7\left(4.6596, 9.7041\right)</math>
+
| <math>P_7\left(4.6596, 9.7041\right)</math>
|- style="border-top: 2px solid;"
+
|- style="text-align:center"
| rowspan='6' style="border-bottom: 2px solid;border-left: 2px solid;border-right: 2px solid;" |
+
| rowspan='6' |
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
{| class="floating_imageSCP" style="text-align: center; margin: 1em auto; width: 100%;max-width: 100%;"
|-
+
|-style="text-align:center"
|[[Image:Draft_Acosta_541201686-CantorSet.png|100px|]]
+
|[[Image:Review_986628909362-CantorSet.png|100px|]]
 
|}
 
|}
[[Image:Draft_Acosta_541201686-CantorSet.png|300px|CantorSet.png]]
+
[[Image:Review_986628909362-CantorSet.png|300px|CantorSet.png]]
| colspan='4' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | c) Cantor middle-thirds set fractal <math>n\left(x\right)=0.6309x+0.6931</math>.
+
colspan='4' style="text-aling:center;" | (c) Cantor middle-thirds set fractal <math>n\left(x\right)=0.6309x+0.6931</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.3333  
+
| 0.3333  
| style="border-left: 2px solid;border-right: 2px solid;" | 1  
+
| 1  
| style="border-left: 2px solid;border-right: 2px solid;" | 2  
+
| 2  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_1\left(0, 0.6931\right)</math>
+
| <math>P_1\left(0, 0.6931\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.1111  
+
| 0.1111  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.3333  
+
| 0.3333  
| style="border-left: 2px solid;border-right: 2px solid;" | 4  
+
| 4  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_2\left(1.0986, 1.3863\right)</math>
+
| <math>P_2\left(1.0986, 1.3863\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.037  
+
| 0.037  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.1111  
+
| 0.1111  
| style="border-left: 2px solid;border-right: 2px solid;" | 8  
+
| 8  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_3\left(2.1972, 2.0794\right)</math>
+
| <math>P_3\left(2.1972, 2.0794\right)</math>
|-
+
|-style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0123  
+
| 0.0123  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.037  
+
| 0.037  
| style="border-left: 2px solid;border-right: 2px solid;" | 16  
+
| 16  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_4\left(3.2958, 2.7726\right)</math>
+
| <math>P_4\left(3.2958, 2.7726\right)</math>
|- style="border-bottom: 2px solid;"
+
|- style="text-align:center"
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0041  
+
| 0.0041  
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0123  
+
| 0.0123  
| style="border-left: 2px solid;border-right: 2px solid;" | 32  
+
| 32  
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(4.3944, 3.4657\right)</math>
+
| <math>P_5\left(4.3944, 3.4657\right)</math>
 
+
 
|}
 
|}
  
==3 Application of the box counting method.==
+
==3. Application of the box counting method==
  
Let's calculate the fractal dimension again for figure ([[#img-1|1]]e), but using the “ImageJ” application <span id='citeF-7'></span>[[#cite-7|[7]]] through the “FracLac” plugin. For this was generated an image in jpg, png or bmp format with only the Koch's curve, to be able to carry out the procedure in the aforementioned software. Figure ([[#img-3|3]]) shows the result obtained <span id='citeF-4'></span>[[#cite-4|[4]]]-<span id='citeF-12'></span>[[#cite-12|[12]]].
+
Let's calculate the fractal dimension again for [[#img-1|Figure 1]]e, but using the “ImageJ” application <span id='citeF-7'></span>[[#cite-7|[7]]] through the “FracLac” plugin. For this was generated an image in jpg, png or bmp format with only the Koch's curve, to be able to carry out the procedure in the aforementioned software. [[#img-3|Figure 3]] shows the result obtained <span id='citeF-4'></span>[[#cite-4|[4]]]-<span id='citeF-12'></span>[[#cite-12|[12]]].
  
 
<div id='img-3'></div>
 
<div id='img-3'></div>
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
<div id='img-1'></div>
 +
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
 
|-
 
|-
|[[Image:Draft_Acosta_541201686-Fig3-Chaos.png|420px|Fractal dimension D<sub>B</sub>= 1.2848 calculated using the “FracLac” plugin of “ImageJ” app.]]
+
|style="padding:10px;"|[[Image:Review_986628909362-Fig3-Chaos.png|420px|Fractal dimension D<sub>B</sub>= 1.2848 calculated using the “FracLac” plugin of “ImageJ” app.]]
 
|- style="text-align: center; font-size: 75%;"
 
|- style="text-align: center; font-size: 75%;"
| colspan="1" | '''Figure 3:''' Fractal dimension <math>D_B = 1.2848</math> calculated using the “FracLac” plugin of “ImageJ” app.
+
| colspan="1" style="padding:10px;"| '''Figure 3'''. Fractal dimension <math>D_B = 1.2848</math> calculated using the “FracLac” plugin of “ImageJ” app
 
|}
 
|}
  
The image shown has different sizes of the “boxes” and in the smaller one (fig. [[#img-3|3]]f) the fractal dimension that was obtained and that shows a difference with the one calculated directly from figure ([[#img-1|1]]e) with the procedure carried out in table [[#table-1|1]], this difference of the fractal dimensions is <math display="inline">\Delta D_B = 0.02294</math>.
 
  
==4 Application of the counting method with non-ideal rod sizes.==
+
The image shown has different sizes of the “boxes” and in the smaller one ([[#img-3|Figure 3]]f) the fractal dimension that was obtained and that shows a difference with the one calculated directly from  ([[#img-1|Figure 1]]e) with the procedure carried out in  [[#table-1|Table 1]], this difference of the fractal dimensions is <math display="inline">\Delta D_B = 0.02294</math>.
  
If it is carry out the same procedure of “counting rods”, but with dimensions (scales) of each rod different from those known for its construction, this is to have a generalized method applicable to any figure, the following measurements shown in the figure ([[#img-4|4]]) and calculations are made in the table [[#table-3|3]].
+
==4. Application of the counting method with non-ideal rod sizes==
  
In figures ([[#img-4|4]]e) and ([[#img-4|4]]f) approximations of the fit were taken for rod sizes of 0.1 and 0.05 respectively and thus show that this is not exact, given the differences between the magnitudes of the sides of the “ideal”  Koch's curve and the magnitude of the rod used.
+
If it is carry out the same procedure of “counting rods”, but with dimensions (scales) of each rod different from those known for its construction, this is to have a generalized method applicable to any figure, the following measurements shown in the  [[#img-4|Figure 4]] and calculations are made in the  [[#table-3|Table 3]].
 +
 
 +
In [[#img-4|Figures 4]]e and [[#img-4|4]]f approximations of the fit were taken for rod sizes of 0.1 and 0.05 respectively and thus show that this is not exact, given the differences between the magnitudes of the sides of the “ideal”  Koch's curve and the magnitude of the rod used.
  
 
<div id='img-4'></div>
 
<div id='img-4'></div>
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
 
|-
 
|-
|[[Image:Draft_Acosta_541201686-Fig4-Chaos.png|340px|Rod sizes used were 0.5 in a), 0.4 in b), 0.3 in c), 0.2 in d), 0.1 in e) and 0.05 in f).]]
+
|style="padding:10px;"| [[Image:Review_986628909362-Fig4-Chaos.png|440px|Rod sizes used were 0.5 in a), 0.4 in b), 0.3 in c), 0.2 in d), 0.1 in e) and 0.05 in f).]]
 
|- style="text-align: center; font-size: 75%;"
 
|- style="text-align: center; font-size: 75%;"
| colspan="1" | '''Figure 4:''' Rod sizes used were 0.5 in a), 0.4 in b), 0.3 in c), 0.2 in d), 0.1 in e) and 0.05 in f).
+
| colspan="1" style="padding:10px;" | '''Figure 4'''. Rod sizes used. (a) 0.5. (b) 0.4. (c) 0.3. (d) 0.2. (e) 0.1. (f) 0.05
 
|}
 
|}
  
  
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
<div class="center" style="font-size: 75%;">'''Table 3'''. The <math>P_i</math> points are obtained with rod lengths different from those used in the construction of the Koch curve</div>
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 The <math>P_i</math> points are obtained with rod lengths different from those used in the construction of the Koch curve.
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  L. Rod (<math display="inline">a_k</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | Scale (<math display="inline">\xi _k = a_k/a_1</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | N. Rods <math display="inline">N\left(\xi _k\right)</math>
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.5
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 30
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_1\left(0, 3.4012\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.4
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8
+
| style="border-left: 2px solid;border-right: 2px solid;" | 37
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_2\left(0.22314, 3.61092\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.3
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.6
+
| style="border-left: 2px solid;border-right: 2px solid;" | 64
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_3\left(0.51083, 4.15888\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.2
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.4
+
| style="border-left: 2px solid;border-right: 2px solid;" | 128
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_4\left(0.91629, 4.85203\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.2
+
| style="border-left: 2px solid;border-right: 2px solid;" | 256
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(1.60944, 5.54518\right)</math>
+
|- style="border-top: 2px solid;border-bottom: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.05
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 515
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_6\left(2.30259, 6.24417\right)</math>
+
  
 +
<div id='table-3'></div>
 +
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"
 +
|-style="text-align:center"
 +
!  L. Rod (<math display="inline">a_k</math>) !!  Scale <math display="inline">\left(\xi _k = a_k/a_1\right)</math> !!  N. Rods <math display="inline">N\left(\xi _k\right)</math> !!  <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
 +
|- style="text-align:center"
 +
|  0.5
 +
|  1
 +
|  30
 +
|  <math>P_1\left(0, 3.4012\right)</math>
 +
|- style="text-align:center"
 +
|  0.4
 +
|  0.8
 +
| 37
 +
|  <math>P_2\left(0.22314, 3.61092\right)</math>
 +
|- style="text-align:center"
 +
|  0.3
 +
|  0.6
 +
|  64
 +
|  <math>P_3\left(0.51083, 4.15888\right)</math>
 +
|- style="text-align:center"
 +
|  0.2
 +
|  0.4
 +
|  128
 +
|  <math>P_4\left(0.91629, 4.85203\right)</math>
 +
|- style="text-align:center"
 +
|  0.1
 +
|  0.2
 +
|  256
 +
|  <math>P_5\left(1.60944, 5.54518\right)</math>
 +
|- style="text-align:center"
 +
|  0.05
 +
|  0.1
 +
|  515
 +
|  <math>P_6\left(2.30259, 6.24417\right)</math>
 
|}
 
|}
  
The linear fit for the set of points <math display="inline">P=\{ P_1,P_2,P_3,P_4,P_5,P_6 \} </math> of Table [[#table-3|3]] which was obtained from figure ([[#img-4|4]]) is given by equation (eq. [[#eq-3|3]]) with a fractal dimension of <math display="inline">D_B = 1.25966</math>.
+
 
 +
The linear fit for the set of points <math display="inline">P=\{ P_1,P_2,P_3,P_4,P_5,P_6 \} </math> of [[#table-3|Table 3]] which was obtained from [[#img-4|Figure 4]] is given by Eq. [[#eq-3|(3)]] with a fractal dimension of <math display="inline">D_B = 1.25966</math>
  
 
<span id="eq-3"></span>
 
<span id="eq-3"></span>
Line 329: Line 329:
 
|}
 
|}
  
This measurement generates a difference with respect to the original measurement of <math display="inline">\Delta D_B = 0.0022</math>, that is, an order of magnitude with respect to the difference that exists between the “box counting” and the original measurement. This shows that the “rod counting” procedure is a better approximation than the “box counting” in longitudinal measurements of the fractal dimension. Figure ([[#img-4|4]]) shows approaches to the six moments of construction of the adjustment to the Koch curve.
+
This measurement generates a difference with respect to the original measurement of <math display="inline">\Delta D_B = 0.0022</math>, that is, an order of magnitude with respect to the difference that exists between the “box counting” and the original measurement. This shows that the “rod counting” procedure is a better approximation than the “box counting” in longitudinal measurements of the fractal dimension. [[#img-4|Figure 4]] shows approaches to the six moments of construction of the adjustment to the Koch curve.
  
It can also be seen that even when both equations (eq. [[#eq-2|2]], eq. [[#eq-3|3]]) do not have the same slopes, those straight lines obtained are “relatively close” to parallelism.
+
It can also be seen that even when both Eqs.[[#eq-2|(2)]] and [[#eq-3|(3)]] do not have the same slopes, those straight lines obtained are “relatively close” to parallelism.
  
==5 Application of the rod counting method to the Mandelbrot fractal.==
+
==5. Application of the rod counting method to the Mandelbrot fractal==
  
Using the described method of counting rods on a Mandelbrot fractal generated in GeoGebra and whose profile with the different sizes of rods used is shown in figure ([[#img-5|5]]) and the counting results are described in table [[#table-4|4]].
+
Using the described method of counting rods on a Mandelbrot fractal generated in GeoGebra and whose profile with the different sizes of rods used is shown in [[#img-5|Figure 5]] and the counting results are described in [[#table-4|Table 4]].
  
With the results of table [[#table-4|4]], the linear approximation is made, following the Richardson method, which gives us the function of the straight line that best fits the set of points and which is (eq. [[#eq-4|4]]):
+
<div id='img-5'></div>
 +
<div id='img-1'></div>
 +
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 60%;"
 +
|-
 +
|style="padding:10px;"|[[Image:Review_986628909362-Fig5-Chaos.png|357px|The different sizes of rods used to enclose the Mandelbrot fractal are shown, in a perimeter measurement using the rod counting method. The different lengths of the rods were (in cm): a) 0.2, b) 0.15, c) 0.1, d) 0.08, d) 0.06 and e) 0.04.]]
 +
|- style="text-align: center; font-size: 75%;"
 +
| colspan="1" | '''Figure 5'''. The different sizes of rods used to enclose the Mandelbrot fractal are shown, in a perimeter measurement using the rod counting method. The different lengths of the rods were (in cm). (a) 0.2. (b) 0.15. (c) 0.1. (d) 0.08. (d) 0.06. (e) 0.04
 +
|}
 +
 
 +
 
 +
<div class="center" style="font-size: 75%;">'''Table 4'''. Results of rod counting measurements on a Mandelbrot fractal</div>
 +
 
 +
<div id='table-4'></div>
 +
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"
 +
|-style="text-align:center"
 +
!  L. Rod (<math display="inline">a_k</math>) !!  Scale <math display="inline">\left(\xi _k = a_k/a_1\right)</math> !!  N. Rods <math display="inline">N\left(\xi _k\right)</math> !!  <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
 +
|-  style="text-align:center"
 +
|  0.2
 +
|  1
 +
|  33
 +
|  <math>P_1\left(0, 3.49651\right)</math>
 +
|- style="text-align:center"
 +
|  0.15
 +
|  0.8
 +
|  47
 +
|  <math>P_2\left(0.28768, 3.85015\right)</math>
 +
|- style="text-align:center"
 +
|  0.1
 +
|  0.6
 +
|  71
 +
|  <math>P_3\left(0.69315, 4.26268\right)</math>
 +
|-  style="text-align:center"
 +
|  0.08
 +
|  0.4
 +
|  97
 +
|  <math>P_4\left(0.91629, 4.57471\right)</math>
 +
|- style="text-align:center"
 +
|  0.06
 +
|  0.2
 +
|  132
 +
|  <math>P_5\left(1.20397, 4.88280\right)</math>
 +
|- style="text-align:center"
 +
|  0.04
 +
|  0.1
 +
|  213
 +
|  <math>P_5\left(1.60944, 5.36129\right)</math>
 +
|}
 +
 
 +
 
 +
With the results of [[#table-4|Table 4]], the linear approximation is made, following the Richardson method, which gives us the function of the straight line that best fits the set of points and which is (Eq.[[#eq-4|(4)]]):
  
 
<span id="eq-4"></span>
 
<span id="eq-4"></span>
Line 350: Line 399:
 
|}
 
|}
  
 +
For this same fractal, the box counting procedure is used, in the FracLac plugin of the ImageJ application <span id='citeF-4'></span>[[#cite-4|[4]]], whose result is shown in  [[#img-6|Figure 6]] with a (slope of the straight line), which, as can be seen, has a difference with respect to the calculated with the counting of rods.
  
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
<div id='img-6'></div>
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Results of rod counting measurements on a Mandelbrot fractal.
+
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 60%;"
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  L. Rod (<math display="inline">a_k</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | Scale (<math display="inline">\xi _k = a_k/a_1</math>)
+
| style="border-left: 2px solid;border-right: 2px solid;" | N. Rods <math display="inline">N\left(\xi _k\right)</math>
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_k\left(\ln \left(1/\xi _k\right), \ln \left(N\right)\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.2
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 33
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_1\left(0, 3.49651\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.15
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8
+
| style="border-left: 2px solid;border-right: 2px solid;" | 47
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_2\left(0.28768, 3.85015\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.6
+
| style="border-left: 2px solid;border-right: 2px solid;" | 71
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_3\left(0.69315, 4.26268\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.08
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.4
+
| style="border-left: 2px solid;border-right: 2px solid;" | 97
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_4\left(0.91629, 4.57471\right)</math>
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.06
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.2
+
| style="border-left: 2px solid;border-right: 2px solid;" | 132
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(1.20397, 4.88280\right)</math>
+
|- style="border-top: 2px solid;border-bottom: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  0.04
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.1
+
| style="border-left: 2px solid;border-right: 2px solid;" | 213
+
| style="border-left: 2px solid;border-right: 2px solid;" | <math>P_5\left(1.60944, 5.36129\right)</math>
+
 
+
|}
+
 
+
<div id='img-5'></div>
+
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
 
|-
 
|-
|[[Image:Draft_Acosta_541201686-Fig5-Chaos.png|357px|The different sizes of rods used to enclose the Mandelbrot fractal are shown, in a perimeter measurement using the rod counting method. The different lengths of the rods were (in cm): a) 0.2, b) 0.15, c) 0.1, d) 0.08, d) 0.06 and e) 0.04.]]
+
|style="padding:10px;"| [[Image:Review_986628909362-Fig6-Chaos.png|497px|Results of processing perimeter of Mandelbrot's fractal with the box counting method, in the “FracLac” plugin of “ImageJ” app, D<sub>Bb</sub> = 1.1965]]
 
|- style="text-align: center; font-size: 75%;"
 
|- style="text-align: center; font-size: 75%;"
| colspan="1" | '''Figure 5:''' The different sizes of rods used to enclose the Mandelbrot fractal are shown, in a perimeter measurement using the rod counting method. The different lengths of the rods were (in cm): a) 0.2, b) 0.15, c) 0.1, d) 0.08, d) 0.06 and e) 0.04.
+
| colspan="1" style="padding:10px;" | '''Figure 6'''. Results of processing perimeter of Mandelbrot's fractal with the box counting method, in the “FracLac” plugin of “ImageJ” app, <math>D_{Bb} = 1.1965</math>
 
|}
 
|}
  
For this same fractal, the box counting procedure is used, in the FracLac plugin of the ImageJ application <span id='citeF-4'></span>[[#cite-4|[4]]], whose result is shown in figure ([[#img-6|6]]) with a (slope of the straight line), which, as can be seen, has a difference with respect to the calculated with the counting of rods.
+
==6. Discussion about rod counting method==
  
<div id='img-6'></div>
+
In  [[#table-5|Table 5]] results of calculation by rod counting and box counting are shown and compared with the the theoretical calculations reported <span id='citeF-10'></span>[[#cite-10|[10]]]-<span id='citeF-12'></span>[[#cite-12|[12]]], also results obtained by <span id='citeF-9'></span>[[#cite-9|[9]]] are shown in the last column of  [[#table-5|Table 5]] for comparison. The penultimate row of the [[#table-5|Table 5]] refers to the calculated Koch's snowflake fractal with non-regular sizes.
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
+
 
|-
+
<div class="center" style="font-size: 75%;">'''Table 5'''. Comparison of measurements made on different fractal figures using different procedures. The last column takes into a count results given by <span id='citeF-9'></span>[[#cite-9|[9]]]</div>
|[[Image:Draft_Acosta_541201686-Fig6-Chaos.png|197px|Results of processing perimeter of Mandelbrot's fractal with the box counting method, in the “FracLac” plugin of “ImageJ” app, D<sub>Bb</sub> = 1.1965]]
+
 
|- style="text-align: center; font-size: 75%;"
+
<div id='table-5'></div>
| colspan="1" | '''Figure 6:''' Results of processing perimeter of Mandelbrot's fractal with the box counting method, in the “FracLac” plugin of “ImageJ” app, <math>D_{Bb} = 1.1965</math>
+
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;"  
 +
|-style="text-align:center"
 +
!  Geometry !!  Theoretical !!  Rod C. !!  B. Count. !!  E. B. Count.
 +
|- style="text-align:center"
 +
|  Koch Snowflake
 +
|  1.2620
 +
| 1.26186
 +
| 1.2848
 +
|  1.267
 +
|- style="text-align:center"
 +
|  Hilbert´s curve
 +
|  2.0000
 +
|  2.04097
 +
1.8984
 +
|  1.974
 +
|- style="text-align:center"
 +
|  Koch 85' curve
 +
|  1.7850
 +
|  1.78505
 +
|  1.7032
 +
|  1.788
 +
|- style="text-align:center"
 +
| Cantor Set
 +
|  0.6310
 +
|  0.63093
 +
|  0.8082
 +
| - -
 +
|- style="text-align:center"
 +
|   Koch NIS
 +
|  1.2620
 +
|  1.25966
 +
|  1.2848
 +
|  1.267
 +
|- style="text-align:center"
 +
Mandelbrot  
 +
|  - -
 +
|  1.15397
 +
1.1965  
 +
| - -
 
|}
 
|}
  
==6 Conclusions about rod counting method.==
 
  
In table [[#table-5|5]] results of calculation by rod counting and box counting are shown and compared with the the theoretical calculations reported <span id='citeF-10'></span>[[#cite-10|[10]]]-<span id='citeF-12'></span>[[#cite-12|[12]]], also results obtained by <span id='citeF-9'></span>[[#cite-9|[9]]] are shown in the last column of table [[#table-5|5]] for comparison. The penultimate row of the table [[#table-5|5]] refers to the calculated Koch's snowflake fractal with non-regular sizes.
+
The application of the “box counting” method implies the measurement of the area of an object, however this same procedure, without any change, is used in the measurement of lengths, but there are differences in the results obtained, as shown in [[#table-5|Table 5]], when compared with the theoretical results.
  
 +
In column 4 of [[#table-5|Table 5]] an area method is used and even when this area collapse to a line, this procedure shows a numerical difference with respect to a perimeter method.
  
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
+
Based on these differences, it is proposed to use the “rod counting” for longitudinal measurements, the “box counting” method is used to measure areas, as well as for the measurement of 3D distributions, the “cube counting” is used.
|+ style="font-size: 75%;" |<span id='table-5'></span>Table. 5 Comparison of measurements made on different fractal figures using different procedures. The last column takes into a count results given by <span id='citeF-9'></span>[[#cite-9|[9]]] .
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Geometry
+
| style="border-left: 2px solid;border-right: 2px solid;" | Theoretical
+
| style="border-left: 2px solid;border-right: 2px solid;" | Rod C.
+
| style="border-left: 2px solid;border-right: 2px solid;" | B. Count.
+
| style="border-left: 2px solid;border-right: 2px solid;" | E. B. Count.
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Koch Snowflake
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.262
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.26186
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.2848
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.267
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Hilbert´s curve
+
| style="border-left: 2px solid;border-right: 2px solid;" | 2.0
+
| style="border-left: 2px solid;border-right: 2px solid;" | 2.041
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.8984
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.974
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Koch 85' curve
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.785
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.785
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.7032
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.788
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Cantor Set
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.6309
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.6309
+
| style="border-left: 2px solid;border-right: 2px solid;" | 0.8082
+
| style="border-left: 2px solid;border-right: 2px solid;" | - -
+
|- style="border-top: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Koch NIS
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.262
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.25966
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.2848
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.267
+
|- style="border-top: 2px solid;border-bottom: 2px solid;"
+
| style="border-left: 2px solid;border-right: 2px solid;" |  Mandelbrot
+
| style="border-left: 2px solid;border-right: 2px solid;" | - -
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.15397
+
| style="border-left: 2px solid;border-right: 2px solid;" | 1.1965
+
| style="border-left: 2px solid;border-right: 2px solid;" | - -
+
  
|}
+
Taking into account the existing software, the ImageJ application gives us the possibility to efficiently measure the fractal dimension of areas, but it does not have a plugin to perform linear measurements. This is why GeoGebra, even though it is not designed for that purpose, has tools that enable the application of the “rod counting” method in an orderly manner.
 +
 
 +
==7. Conclusions==
  
 
* It was possible to show that there is a numerically evaluable difference between the counting of boxes and the counting of rods for linear (perimeter) measurements.
 
* It was possible to show that there is a numerically evaluable difference between the counting of boxes and the counting of rods for linear (perimeter) measurements.
Line 465: Line 472:
 
* The method of counting rods and boxes is applied to the fractal of the Koch curve and whose differences with respect to the Hausdorff-Besicovitch result give us <math display="inline">\Delta D_{Bb} = 0.02294</math> and <math display="inline">\Delta D_{Br} = 0.0022</math>, where it refers to the counting of boxes and rods respectively.
 
* The method of counting rods and boxes is applied to the fractal of the Koch curve and whose differences with respect to the Hausdorff-Besicovitch result give us <math display="inline">\Delta D_{Bb} = 0.02294</math> and <math display="inline">\Delta D_{Br} = 0.0022</math>, where it refers to the counting of boxes and rods respectively.
  
* Both measurement methods are applied to the Mandelbrot fractal, in a perimeter measurement, and it is established that <math display="inline">D_{Bb} = 1.1965</math> and that <math display="inline">D_{Br} = 1.15397</math> which is considered as the correct one, because it is a linear measurement.
+
* Both measurement methods are applied to the Mandelbrot fractal, in a perimeter measurement, and it is established that <math display="inline">D_{Bb} = 1.1965</math> (box count), and that <math display="inline">D_{Br} = 1.15397</math> (rod count) which is considered as the correct one, because it is a linear measurement.
 +
 
  
 
Therefore, it is established that in the linear measurements made on fractals, the counting of rods provides a better approximation to the result of applying the Hausdorff-Besicovitch definition than those obtained with the counting of boxes, even with “non-standardized” rod sizes.
 
Therefore, it is established that in the linear measurements made on fractals, the counting of rods provides a better approximation to the result of applying the Hausdorff-Besicovitch definition than those obtained with the counting of boxes, even with “non-standardized” rod sizes.
Line 471: Line 479:
 
Thus, if the objective is to have a better description of the surrounding reality, the method used to describe the fractal geometry that is generated must be in accordance with the measurement made, to measure lines, the counting of rods, to measure areas, the counting of boxes and to measure volumes, the counting of cubes.
 
Thus, if the objective is to have a better description of the surrounding reality, the method used to describe the fractal geometry that is generated must be in accordance with the measurement made, to measure lines, the counting of rods, to measure areas, the counting of boxes and to measure volumes, the counting of cubes.
  
===BIBLIOGRAPHY===
+
==References==
 +
 
 +
<div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
  
 
<div id="cite-1"></div>
 
<div id="cite-1"></div>
'''[[#citeF-1|[1]]]''' B. Mandelbrot, “The fractal geometry of nature”, W. H. Freeman 1982. <div id="cite-2"></div>
+
[[#citeF-1|[1]]]  Mandelbrot B. The fractal geometry of nature. W.H. Freeman and Company, pp. 460,  1982.  
'''[[#citeF-2|[2]]]''' B. Mandelbrot, “Self-affine and Fractal dimension”, Physica Scripta, vol.  32(4),  1985, pp. 257-260. <div id="cite-3"></div>
+
 
'''[[#citeF-3|[3]]]''' B. Mandelbrot, “How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension”, Science, 156(3775), pp. 636-638, DOI: 10.1126/science.156.3775.636 <div id="cite-4"></div>
+
<div id="cite-2"></div>
'''[[#citeF-4|[4]]]''' Santos E., Souza F. and Ambrosío P. “Fractal dimension for characterization of focal breast lesion”, Conference WCCM XI, July 20 - 25, 2014, Barcelona, Spain. DOI: 10.13140/2.1.4186.9441 <div id="cite-5"></div>
+
[[#citeF-2|[2]]]  Mandelbrot B. Self-affine and Fractal dimension. Physica Scripta, 32(4):257-260, 1985.  
'''[[#citeF-5|[5]]]''' Maipas S, Nonni A, Politi E, et al. (November 24, 2018) The Goodness-of-fit of the Fractal Dimension as a Diagnostic Factor in Breast Cancer. Cureus 10(11): e3630. doi:10.7759/cureus.3630 <div id="cite-6"></div>
+
 
'''[[#citeF-6|[6]]]''' Martinez B. de Oliveira Plotze R. Falvo M. and de Castro M. “Fractal dimension applied to plant identification”, Information Sciences, Elsevier, vol 178(12), 2008, pp 2722-2733. <div id="cite-7"></div>
+
<div id="cite-3"></div>
'''[[#citeF-7|[7]]]''' ImageJ “Processing and Analysis in Java” https://imagej.nih.gov <div id="cite-8"></div>
+
[[#citeF-3|[3]]]  Mandelbrot B.  How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775):636-638, 1967. DOI: 10.1126/science.156.3775.636  
'''[[#citeF-8|[8]]]''' Geogebra, “GeoGebra to teach and learn Mathematics” www.geogebra.org <div id="cite-9"></div>
+
 
'''[[#citeF-9|[9]]]''' Gun-Baek So, Hye-Rim So, Gang-Gyoo Jin, “Enhancement of the Box-Counting Algorithm for fractal dimension estimation”, Pattern Recognition Letters, Volume 98, 2017, Pages 53-58, http://dx.doi.org/10.1016/j.patrec.2017.08.022 <div id="cite-10"></div>
+
<div id="cite-4"></div>
'''[[#citeF-10|[10]]]''' H. Strogatz, ``Nonlinear Dynamics and Chaos: With applications to Physics, Biology, Chemistry and Engineering, Westview Press, Boulder CO. USA, 2nd edition (2015). <div id="cite-11"></div>
+
[[#citeF-4|[4]]]  Santos E., Souza F., Ambrosío P. Fractal dimension for characterization of focal breast lesion. Conference WCCM XI, July 20-25, Barcelona, Spain, 2014. DOI: 10.13140/2.1.4186.9441  
'''[[#citeF-11|[11]]]''' R. Devaney “A first course in chaotic dynamical systems theory and experiment” CRC Press, Florida USA, 2nd edition (2020). <div id="cite-12"></div>
+
 
'''[[#citeF-12|[12]]]''' D. Gatzouras and S. Lalley, “Hausdorff and box dimensions of certain self-affine fractals”, Indiana University Mathematics Journal, vol. 41(2), 1992, pp. 533-568. <div id="cite-13"></div>
+
<div id="cite-5"></div>
'''[13]''' A. Husain, J. Reddy, D. Bisht and M. Sajid “Fractal dimension of coastline of Australia”, Nature Scientific Report,  2021, doi.org/10.1038/s41598-021-85405-0 <div id="cite-14"></div>
+
[[#citeF-5|[5]]]  Maipas S., Nonni A., Politi E., Sarlanis H., Kavantzas N.G. The goodness-of-fit of the fractal dimension as a diagnostic factor in breast cancer. Cureus, 10(11):e3630, 2018. doi:10.7759/cureus.3630  
'''[14]''' C. Schneider,  W. Rasband and K. Eliceiri “NIH Image to ImageJ: 25 years of image analysis”, Nature Methods 9, 2012, pp.  671&#8211;675. <div id="cite-15"></div>
+
 
'''[15]''' P. Shanmugavadivu and V. Sivakumar, “Fractal dimension-bound spatiotemporal analysis of digital mammograms”, The European Physics Journal Special Topics, vol. 225, pp. 137-146. <div id="cite-16"></div>
+
<div id="cite-6"></div>
'''[16]''' B. Bárány, M. Hochman and A. Rapaport, “Hausdorff dimension of planar self-affine measures”, Inventiones Mathematicae. vol. 16, 2019, pp. 601&#8211;659. <div id="cite-17"></div>
+
[[#citeF-6|[6]]]  Martinez B., de Oliveira Plotze R., Falvo M., de Castro M. Fractal dimension applied to plant identification. Information Sciences, 178(12):2722-2733, 2008.  
'''[[#citeF-17|[17]]]'''  H. Christensen, and O. Driver, “The fractal nature of clouds in global storm-resolving models”, ArXiv:2108.08565v1,  19 Aug 2021.
+
 
 +
<div id="cite-7"></div>
 +
[[#citeF-7|[7]]]  ImageJ Processing and Analysis in Java https://imagej.nih.gov  
 +
 
 +
<div id="cite-8"></div>
 +
[[#citeF-8|[8]]]  Geogebra, GeoGebra to teach and learn Mathematics https://www.geogebra.org  
 +
 
 +
<div id="cite-9"></div>
 +
[[#citeF-9|[9]]]  Gun-Baek So, Hye-Rim So, Gang-Gyoo Jin. Enhancement of the box-counting algorithm for fractal dimension estimation. Pattern Recognition Letters, 98:53-58, 2017. http://dx.doi.org/10.1016/j.patrec.2017.08.022  
 +
 
 +
<div id="cite-10"></div>
 +
[[#citeF-10|[10]]]  Strogatz H. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. Westview Press, Boulder CO. USA, 2nd edition, 2015.  
 +
 
 +
<div id="cite-11"></div>
 +
[[#citeF-11|[11]]]  Devaney R. A first course in chaotic dynamical systems theory and experiment. CRC Press, Florida USA, 2nd edition, 2020.  
 +
 
 +
<div id="cite-12"></div>
 +
[[#citeF-12|[12]]]  Gatzouras D.,  Lalley  S. Hausdorff and box dimensions of certain self-affine fractals. Indiana University Mathematics Journal, 41(2):533-568, 1992.  
 +
 
 +
<div id="cite-13"></div>
 +
[13]  Husain A., Reddy J., Bisht D.,  Sajid M. Fractal dimension of coastline of Australia. Nature Scientific Report,  11:6304 2021. doi.org/10.1038/s41598-021-85405-0  
 +
 
 +
<div id="cite-14"></div>
 +
[14]  Schneider C.,  Rasband W., Eliceiri K. NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9:671-675, 2012.  
 +
 
 +
<div id="cite-15"></div>
 +
[15]  Shanmugavadivu P., Sivakumar V. Fractal dimension-bound spatiotemporal analysis of digital mammograms. The European Physics Journal Special Topics, 225:137-146, 2016.  
 +
 
 +
<div id="cite-16"></div>
 +
[16]  Bárány B., Hochman M., Rapaport A. Hausdorff dimension of planar self-affine measures. Inventiones Mathematicae, 16:601-659, 2019.  
 +
 
 +
<div id="cite-17"></div>
 +
[17]   Christensen H., Driver O. The fractal nature of clouds in global storm-resolving models. ArXiv:2108.08565v1,  Aug 2021.  
 +
 
 +
<div id="cite-18"></div>
 +
[[#citeF-18|[18]]]  Acosta C., Carvente  O.,  Peñuñuri F. Fractal dimension measured over areas and perimeters using Box Counting technique applied over a Mandelbrot figures. Rev. int. métodos numér. cálc. diseño ing.,  38(1), 11, 2022. doi.org/10.23967/j.rimni.2022.03.007

Latest revision as of 12:18, 1 July 2022

Abstract

In this work, the “rod counting” method is reviewed in comparison with the “box counting” method applied to linear measurements on irregular figures. Both methods are applied in measurements of fractal dimension of some knowing fractals. Results shows that the “rod counting” method is more accurate in linear measurements. Later the method is applied in a Mandelbrot fractal figure to measure its perimeter fractal dimension.

Keywords: Rod counting, box counting, Mandelbrot fractal, fractal dimension, ImageJ

1. Introduction

When Benoit Mandelbrot initially refers to the method of Lewis Fry Richardson [1,2,3] on the measurements of the coast lines () of Britain or borders of Germany, Spain, etc., he does so using the idea of “a compass opening” or rods of the same size () in a first measurement, and that later, changes the size of the rods to measure the coastline or border again (Richardson's method).

Then, when plotting these results wit on the vertical axis and on the horizontal axis, it is described a straight line when a linear fit of the measurements is made and the Hausdorff-Besicovitch dimension is related with the slope of the line.

Mandelbrot also refers to the fact that the measurements made in 2-H, in the case of self-similarity, coincide with the Hausdorff-Besicovitch dimension [2]. However, the comparison that Mandelbrot makes in his 1967 article [1], for linear measurements he does with variants of the Koch curve and whose statistical self-similarity is the Hausdorff-Besicovitch fractal dimension.

The fractal dimension method are used in medicine to study breast cancer, but the use of this technique is done by analysing the contour of an image generated in a mammography and periodically reviewing the evolution of the disease through the revision of the perimeter of the updated images [4,5]. The same procedure is used for recognition of plants [6] through the study of their leaves (analysis of the contour and veins).

The “box counting” method has been used to measure the fractal dimension of areas as well as lengths, this consists of building a box with side `` and counting the points that remain inside the box, the relation of powers for any dimension is (Eq. (1)):

(1)

where is the perimeter length is the scale, is the area, is the volume, is the number of “rods”, “boxes” or “cubes” used, and “D” is the Hausdorff-Besicovitch dimension.

Applying the relationship only for longitudinal measurements, let us compare the results given by the measurement made using boxes (Box Counting) with that made through rods (Rod Counting). The measurements for the counting of boxes will be carried out with the “ImageJ” application [7] that is part of a “SciJava OSS” free software project using the “FracLac” plugin and the counting of rods with the “GeoGebra” app [8].

The box counting technique has been reviewed by some authors and an optimization algorithm has been proposed [9], however the results obtained when applying the procedure are close to the rod counting method, but the latter being simpler in its implementation.

2. Calculation of the fractal dimension with the Richardson method

To carry out this comparison we will use the Koch curve, whose Hausdorff-Besicovitch fractal dimension is known (), [10,11]. Figure 1 shows five moments of construction of the Koch curve, which was generated in GeoGebra [8].

Koch curve generated in GeoGebra.
Figure 1. Koch curve generated in GeoGebra


Arranging these construction moments in Table 1 following the methodology proposed by Richardson, we obtain the straight line whose slope is the Hausdorff-Besicovitch fractal dimension [1], [12]-[18].

Table 1. Richardson's method used to calculate the statistical self-similar fractal dimension of Koch's curve
L. Rod Scale N. Rods
3 1 4
1 1/3 16
1/3 1/9 64
1/9 1/27 256
1/27 1/81 1024


Linear fit of the data in the last column of Table 1 leads us to the linear function (Eq.(2)):

(2)

where it is observed that the slope of this function is the fractal dimension calculated based on the Hausdorff-Besicovitch description for Koch's curve, but obtained with Richardson's procedure (Figure 2).

Fractal dimension of Koch's curve measured following Richardson's method with the “rod” sizes equals to the original size used in every step of construction.
Figure 2. Fractal dimension of Koch's curve measured following Richardson's method with the “rod” sizes equals to the original size used in every step of construction


Geometric fractals of a) Hilbert's curve, b) Koch 85's curve and c) the Cantor middle-thirds set were also generated in GeoGebra [8], whose fractal dimensions were calculated with the rod counting method, which are shown in Table 2. These figures were generated and measured since their fractal dimension are calculated with the perimeter or contour procedure. There are other fractal figures that can be generated, such as the Sierpinsky's triangle and carpet and some others, but since areas are generated in these elements, it is more convenient to use the box counting method there.

Table 2. Richardson's method used to calculate the statistical self-similar fractal dimension of (a) Hilbrts's curve, (b) Koch 85's curve and (c) Cantor middle-thirds set
Review 986628909362-Hilbert.png

Hilbert.png

(a) Hilbert's curve fractal
L. Rod Scale N. Rods
4 1 3
2 0.5 15
1 0.25 63
0.5 0.125 255
0.25 0.625 1023
0.125 0.0313 4095
0.0625 0.0156 16383
0.0313 0.0078 65535
Review 986628909362-Koch85.png

Koch85.png

(b) Koch 85's curve fractal
4.1392 1 4
1.9037 0.4599 16
0.8755 0.2115 64
0.4027 0.0973 256
0.1852 0.0447 1024
0.0852 0.0206 4096
0.0392 0.0095 16384
Review 986628909362-CantorSet.png

CantorSet.png

(c) Cantor middle-thirds set fractal
0.3333 1 2
0.1111 0.3333 4
0.037 0.1111 8
0.0123 0.037 16
0.0041 0.0123 32

3. Application of the box counting method

Let's calculate the fractal dimension again for Figure 1e, but using the “ImageJ” application [7] through the “FracLac” plugin. For this was generated an image in jpg, png or bmp format with only the Koch's curve, to be able to carry out the procedure in the aforementioned software. Figure 3 shows the result obtained [4]-[12].

Fractal dimension DB= 1.2848 calculated using the “FracLac” plugin of “ImageJ” app.
Figure 3. Fractal dimension calculated using the “FracLac” plugin of “ImageJ” app


The image shown has different sizes of the “boxes” and in the smaller one (Figure 3f) the fractal dimension that was obtained and that shows a difference with the one calculated directly from (Figure 1e) with the procedure carried out in Table 1, this difference of the fractal dimensions is .

4. Application of the counting method with non-ideal rod sizes

If it is carry out the same procedure of “counting rods”, but with dimensions (scales) of each rod different from those known for its construction, this is to have a generalized method applicable to any figure, the following measurements shown in the Figure 4 and calculations are made in the Table 3.

In Figures 4e and 4f approximations of the fit were taken for rod sizes of 0.1 and 0.05 respectively and thus show that this is not exact, given the differences between the magnitudes of the sides of the “ideal” Koch's curve and the magnitude of the rod used.

Rod sizes used were 0.5 in a), 0.4 in b), 0.3 in c), 0.2 in d), 0.1 in e) and 0.05 in f).
Figure 4. Rod sizes used. (a) 0.5. (b) 0.4. (c) 0.3. (d) 0.2. (e) 0.1. (f) 0.05


Table 3. The points are obtained with rod lengths different from those used in the construction of the Koch curve
L. Rod () Scale N. Rods
0.5 1 30
0.4 0.8 37
0.3 0.6 64
0.2 0.4 128
0.1 0.2 256
0.05 0.1 515


The linear fit for the set of points of Table 3 which was obtained from Figure 4 is given by Eq. (3) with a fractal dimension of

(3)

This measurement generates a difference with respect to the original measurement of , that is, an order of magnitude with respect to the difference that exists between the “box counting” and the original measurement. This shows that the “rod counting” procedure is a better approximation than the “box counting” in longitudinal measurements of the fractal dimension. Figure 4 shows approaches to the six moments of construction of the adjustment to the Koch curve.

It can also be seen that even when both Eqs.(2) and (3) do not have the same slopes, those straight lines obtained are “relatively close” to parallelism.

5. Application of the rod counting method to the Mandelbrot fractal

Using the described method of counting rods on a Mandelbrot fractal generated in GeoGebra and whose profile with the different sizes of rods used is shown in Figure 5 and the counting results are described in Table 4.

The different sizes of rods used to enclose the Mandelbrot fractal are shown, in a perimeter measurement using the rod counting method. The different lengths of the rods were (in cm): a) 0.2, b) 0.15, c) 0.1, d) 0.08, d) 0.06 and e) 0.04.
Figure 5. The different sizes of rods used to enclose the Mandelbrot fractal are shown, in a perimeter measurement using the rod counting method. The different lengths of the rods were (in cm). (a) 0.2. (b) 0.15. (c) 0.1. (d) 0.08. (d) 0.06. (e) 0.04


Table 4. Results of rod counting measurements on a Mandelbrot fractal
L. Rod () Scale N. Rods
0.2 1 33
0.15 0.8 47
0.1 0.6 71
0.08 0.4 97
0.06 0.2 132
0.04 0.1 213


With the results of Table 4, the linear approximation is made, following the Richardson method, which gives us the function of the straight line that best fits the set of points and which is (Eq.(4)):

(4)

For this same fractal, the box counting procedure is used, in the FracLac plugin of the ImageJ application [4], whose result is shown in Figure 6 with a (slope of the straight line), which, as can be seen, has a difference with respect to the calculated with the counting of rods.

Results of processing perimeter of Mandelbrot's fractal with the box counting method, in the “FracLac” plugin of “ImageJ” app, DBb = 1.1965
Figure 6. Results of processing perimeter of Mandelbrot's fractal with the box counting method, in the “FracLac” plugin of “ImageJ” app,

6. Discussion about rod counting method

In Table 5 results of calculation by rod counting and box counting are shown and compared with the the theoretical calculations reported [10]-[12], also results obtained by [9] are shown in the last column of Table 5 for comparison. The penultimate row of the Table 5 refers to the calculated Koch's snowflake fractal with non-regular sizes.

Table 5. Comparison of measurements made on different fractal figures using different procedures. The last column takes into a count results given by [9]
Geometry Theoretical Rod C. B. Count. E. B. Count.
Koch Snowflake 1.2620 1.26186 1.2848 1.267
Hilbert´s curve 2.0000 2.04097 1.8984 1.974
Koch 85' curve 1.7850 1.78505 1.7032 1.788
Cantor Set 0.6310 0.63093 0.8082 - -
Koch NIS 1.2620 1.25966 1.2848 1.267
Mandelbrot - - 1.15397 1.1965 - -


The application of the “box counting” method implies the measurement of the area of an object, however this same procedure, without any change, is used in the measurement of lengths, but there are differences in the results obtained, as shown in Table 5, when compared with the theoretical results.

In column 4 of Table 5 an area method is used and even when this area collapse to a line, this procedure shows a numerical difference with respect to a perimeter method.

Based on these differences, it is proposed to use the “rod counting” for longitudinal measurements, the “box counting” method is used to measure areas, as well as for the measurement of 3D distributions, the “cube counting” is used.

Taking into account the existing software, the ImageJ application gives us the possibility to efficiently measure the fractal dimension of areas, but it does not have a plugin to perform linear measurements. This is why GeoGebra, even though it is not designed for that purpose, has tools that enable the application of the “rod counting” method in an orderly manner.

7. Conclusions

  • It was possible to show that there is a numerically evaluable difference between the counting of boxes and the counting of rods for linear (perimeter) measurements.
  • The method of counting rods and boxes is applied to the fractal of the Koch curve and whose differences with respect to the Hausdorff-Besicovitch result give us and , where it refers to the counting of boxes and rods respectively.
  • Both measurement methods are applied to the Mandelbrot fractal, in a perimeter measurement, and it is established that (box count), and that (rod count) which is considered as the correct one, because it is a linear measurement.


Therefore, it is established that in the linear measurements made on fractals, the counting of rods provides a better approximation to the result of applying the Hausdorff-Besicovitch definition than those obtained with the counting of boxes, even with “non-standardized” rod sizes.

Thus, if the objective is to have a better description of the surrounding reality, the method used to describe the fractal geometry that is generated must be in accordance with the measurement made, to measure lines, the counting of rods, to measure areas, the counting of boxes and to measure volumes, the counting of cubes.

References

[1] Mandelbrot B. The fractal geometry of nature. W.H. Freeman and Company, pp. 460, 1982.

[2] Mandelbrot B. Self-affine and Fractal dimension. Physica Scripta, 32(4):257-260, 1985.

[3] Mandelbrot B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775):636-638, 1967. DOI: 10.1126/science.156.3775.636

[4] Santos E., Souza F., Ambrosío P. Fractal dimension for characterization of focal breast lesion. Conference WCCM XI, July 20-25, Barcelona, Spain, 2014. DOI: 10.13140/2.1.4186.9441

[5] Maipas S., Nonni A., Politi E., Sarlanis H., Kavantzas N.G. The goodness-of-fit of the fractal dimension as a diagnostic factor in breast cancer. Cureus, 10(11):e3630, 2018. doi:10.7759/cureus.3630

[6] Martinez B., de Oliveira Plotze R., Falvo M., de Castro M. Fractal dimension applied to plant identification. Information Sciences, 178(12):2722-2733, 2008.

[7] ImageJ Processing and Analysis in Java https://imagej.nih.gov

[8] Geogebra, GeoGebra to teach and learn Mathematics https://www.geogebra.org

[9] Gun-Baek So, Hye-Rim So, Gang-Gyoo Jin. Enhancement of the box-counting algorithm for fractal dimension estimation. Pattern Recognition Letters, 98:53-58, 2017. http://dx.doi.org/10.1016/j.patrec.2017.08.022

[10] Strogatz H. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. Westview Press, Boulder CO. USA, 2nd edition, 2015.

[11] Devaney R. A first course in chaotic dynamical systems theory and experiment. CRC Press, Florida USA, 2nd edition, 2020.

[12] Gatzouras D., Lalley S. Hausdorff and box dimensions of certain self-affine fractals. Indiana University Mathematics Journal, 41(2):533-568, 1992.

[13] Husain A., Reddy J., Bisht D., Sajid M. Fractal dimension of coastline of Australia. Nature Scientific Report, 11:6304 2021. doi.org/10.1038/s41598-021-85405-0

[14] Schneider C., Rasband W., Eliceiri K. NIH image to ImageJ: 25 years of image analysis. Nature Methods, 9:671-675, 2012.

[15] Shanmugavadivu P., Sivakumar V. Fractal dimension-bound spatiotemporal analysis of digital mammograms. The European Physics Journal Special Topics, 225:137-146, 2016.

[16] Bárány B., Hochman M., Rapaport A. Hausdorff dimension of planar self-affine measures. Inventiones Mathematicae, 16:601-659, 2019.

[17] Christensen H., Driver O. The fractal nature of clouds in global storm-resolving models. ArXiv:2108.08565v1, Aug 2021.

[18] Acosta C., Carvente O., Peñuñuri F. Fractal dimension measured over areas and perimeters using Box Counting technique applied over a Mandelbrot figures. Rev. int. métodos numér. cálc. diseño ing., 38(1), 11, 2022. doi.org/10.23967/j.rimni.2022.03.007
Back to Top

Document information

Published on 01/07/22
Accepted on 16/06/22
Submitted on 26/04/22

Volume 38, Issue 3, 2022
DOI: 10.23967/j.rimni.2022.06.006
Licence: CC BY-NC-SA license

Document Score

0

Views 47
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?