David.franco (talk | contribs) (Created page with " == Abstract == The increasing demand for energy has intensified recently, requiring alternative sources to fossil fuels, which have become economically and environmentally u...") |
David.franco (talk | contribs) m (David.franco moved page Draft Franco 502571623 to Franco Steiner 2021a) |
(No difference)
|
The increasing demand for energy has intensified recently, requiring alternative sources to fossil fuels, which have become economically and environmentally unfeasible. On the other hand, the increasing land occupation in recent centuries is a growing problem, demanding greater efficiency, particularly in the reuse of abandoned areas, which has become an alternative. An interesting alternative would be installing energy facilities like solar, wind, biomass, and geothermal, in these areas. The objective of this paper is to develop a classification methodology, based on Artificial Intelligence (AI) and Quantum Theory (QT), to automatically carry out the classification of abandoned areas suitable for the settlement of these power plants. Artificial Neural Networks (ANNs) improved by the hybrid algorithm Quantum-behaved Particle Swarm Optimization (QPSO) together with the Levenberg-Marquardt Algorithm (LMA) were used for the classification task. In terms of Mean Squared Error (MSE), the QPSO-LMA approach achieved a decrease of 19.6% in relation to the classical LMA training with random initial weights. Moreover, the model’s accuracy showed an increase of 7.3% for the QPSO-LMA over the LMA. To validate this new approach, it was also tested on six different datasets available in the UCI Machine Learning Repository and seven classical techniques established in the literature. For the problem of installing photovoltaic plants in abandoned areas, the knowledge acquired with the solar dataset can be extrapolated to other regions.
Published on 01/01/2021
DOI: 10.4236/jgis.2021.133018
Licence: CC BY-NC-SA license