(48 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
==Performance of Stochastic Restricted and Unrestricted Two-Parameter Estimators in linear Mixed Models== | ==Performance of Stochastic Restricted and Unrestricted Two-Parameter Estimators in linear Mixed Models== | ||
− | ''' | + | |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | '''AsupNahid Ganjealivand<sup>1</sup>, Fatemeh Ghapani<sup>*2</sup>,'''<big>''' '''</big>'''AsupZaherzadeh<sup>3</sup>, Farshin Hormozinejad<sup>1</sup>''' | ||
<sup>1</sup> Department of Statistics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran | <sup>1</sup> Department of Statistics, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran | ||
− | |||
<sup>2</sup> Department of Mathematics and Statistics, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran | <sup>2</sup> Department of Mathematics and Statistics, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran | ||
− | ∗Corresponding author. Email address:f.ghapani[mailto: | + | ∗Corresponding author. Email address:f.ghapani[mailto:f.ghapani@iau-shoushtar.ac.ir], [mailto:f-ghapani@phdstu.ac.ir f-ghapani@phdstu.ac.ir] |
<sup>3</sup>Jundi-Shapur University of Technology,Dezful,Iran | <sup>3</sup>Jundi-Shapur University of Technology,Dezful,Iran | ||
Line 20: | Line 31: | ||
In this article, two parameter estimation using penalized likelihood method in the linear mixed model is proposed. In addition, by considering the stochastic linear restriction for the vector of fixed effects parameters we are introduced the stochastic restricted two parameter estimation. Methods are proposed for estimating variance parameters when unknown. Also, the superiority conditions of the two parameter estimator over the best linear unbiased estimator, and the stochastic restricted two parameter estimator over the stochastic restricted best linear unbiased estimator are obtained under the mean square error matrix sense. Methods are proposed for estimating of the biasing parameters. Finally, a simulation study and a numerical example are given to evaluate the proposed estimators. | In this article, two parameter estimation using penalized likelihood method in the linear mixed model is proposed. In addition, by considering the stochastic linear restriction for the vector of fixed effects parameters we are introduced the stochastic restricted two parameter estimation. Methods are proposed for estimating variance parameters when unknown. Also, the superiority conditions of the two parameter estimator over the best linear unbiased estimator, and the stochastic restricted two parameter estimator over the stochastic restricted best linear unbiased estimator are obtained under the mean square error matrix sense. Methods are proposed for estimating of the biasing parameters. Finally, a simulation study and a numerical example are given to evaluate the proposed estimators. | ||
− | '''Keywords''': Linear mixed model, two parameter estimation, stochastic restricted two parameter estimation, matrix mean square error | + | '''Keywords''': Linear mixed model, two parameter estimation, stochastic restricted two parameter estimation, matrix mean square error |
− | + | ||
<!--'''Mathematics Subject''' '''Classification''' 62J05. 62J12.--> | <!--'''Mathematics Subject''' '''Classification''' 62J05. 62J12.--> | ||
+ | |||
==1. Introduction== | ==1. Introduction== | ||
Line 49: | Line 60: | ||
− | where <math display="inline">\zeta</math> and <math display="inline">\xi</math> are <math display="inline">{r}_{1}\times 1</math> and <math display="inline">{r}_{2}\times 1</math> vectors of variance parameters corresponding to <math display="inline">u</math> and <math display="inline">\epsilon</math>, respectively. Henderson et al [6-7] introduced the set of equations called mixed model equations, and obtained <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}</math> as | + | where <math display="inline">\zeta</math> and <math display="inline">\xi</math> are <math display="inline">{r}_{1}\times 1</math> and <math display="inline">{r}_{2}\times 1</math> vectors of variance parameters corresponding to <math display="inline">u</math> and <math display="inline">\epsilon</math>, respectively. Henderson et al. [6-7] introduced the set of equations called mixed model equations, and obtained <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}</math> as |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
Line 61: | Line 72: | ||
where <math display="inline">\mathrm{Var}\,(\mathit{\boldsymbol{y}})={\sigma }^{2}\mathit{\boldsymbol{H}}</math> and <math display="inline">\mathit{\boldsymbol{H}}=</math><math>\mathit{\boldsymbol{ZG}}{\mathit{\boldsymbol{Z}}}^{'}+\mathit{\boldsymbol{W}}</math>. They <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}</math> are called the best linear unbiased estimator (BLUE) and the best linear unbiased predictor (BLUP), respectively. One of the most common estimators in linear regression is the ordinary least squares (OLS) estimator, which in the case of multicollinearity may lead to estimates with adverse effects such as high variance [8]. To reduce the effects of multicollinearity. Liu et al. [9-10] proposed the ridge estimator and the Liu estimator respectively, which are the well-known alternatives of the OLS estimator. Yang and Chang [11] obtained the two parameter estimator <math display="inline">\overset{\mbox{ˆ}}{\mathit{\boldsymbol{\beta }}}(k,d),</math> “Using the mixed estimation technique introduced by Theil et al. [12-13]. They considered the prior information about <math display="inline">\mathit{\boldsymbol{\beta }}</math> in the form of restriction as <math display="inline">(d-</math><math>k)\overset{\mbox{ˆ}}{\mathit{\boldsymbol{\beta }}}(k)=\mathit{\boldsymbol{\beta }}+</math><math>{\mathit{\boldsymbol{\epsilon }}}_{0},</math> where <math display="inline">k,d</math> and <math display="inline">\overset{\mbox{ˆ}}{\mathit{\boldsymbol{\beta }}}(k)</math> are respectively the ridge, Liu parameters and the ridge estimator”. | where <math display="inline">\mathrm{Var}\,(\mathit{\boldsymbol{y}})={\sigma }^{2}\mathit{\boldsymbol{H}}</math> and <math display="inline">\mathit{\boldsymbol{H}}=</math><math>\mathit{\boldsymbol{ZG}}{\mathit{\boldsymbol{Z}}}^{'}+\mathit{\boldsymbol{W}}</math>. They <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}</math> are called the best linear unbiased estimator (BLUE) and the best linear unbiased predictor (BLUP), respectively. One of the most common estimators in linear regression is the ordinary least squares (OLS) estimator, which in the case of multicollinearity may lead to estimates with adverse effects such as high variance [8]. To reduce the effects of multicollinearity. Liu et al. [9-10] proposed the ridge estimator and the Liu estimator respectively, which are the well-known alternatives of the OLS estimator. Yang and Chang [11] obtained the two parameter estimator <math display="inline">\overset{\mbox{ˆ}}{\mathit{\boldsymbol{\beta }}}(k,d),</math> “Using the mixed estimation technique introduced by Theil et al. [12-13]. They considered the prior information about <math display="inline">\mathit{\boldsymbol{\beta }}</math> in the form of restriction as <math display="inline">(d-</math><math>k)\overset{\mbox{ˆ}}{\mathit{\boldsymbol{\beta }}}(k)=\mathit{\boldsymbol{\beta }}+</math><math>{\mathit{\boldsymbol{\epsilon }}}_{0},</math> where <math display="inline">k,d</math> and <math display="inline">\overset{\mbox{ˆ}}{\mathit{\boldsymbol{\beta }}}(k)</math> are respectively the ridge, Liu parameters and the ridge estimator”. | ||
− | In <math display="inline">LMM</math>, authors such as Gilmour, | + | In <math display="inline">LMM</math>, authors such as Gilmour et al. [14], Jiming and Lahiri [15] and Patel and Patel [16], considered a state where the matrix <math display="inline">{X}^{'}{H}^{-1}X</math> is singular. Liu and Hu [10] and Eliot et al. [17] inquired the ridge prediction in LMM. Liu and Hu [10] are obtained <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k)</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}(k)</math> as |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 72: | Line 83: | ||
|} | |} | ||
− | where <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k)</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}(k)</math> are the ridge estimator of <math display="inline">\mathit{\boldsymbol{\beta }}</math> and the ridge predictor of <math display="inline">\mathit{\boldsymbol{u}},</math> respectively. | + | where <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k)</math> and <math display="inline">\tilde{\mathit{\boldsymbol{u}}}(k)</math> are the ridge estimator of <math display="inline">\mathit{\boldsymbol{\beta }}</math> and the ridge predictor of <math display="inline">\mathit{\boldsymbol{u}},</math> respectively. Özkale and Can [18] gave “an example from kidney failure data” to evaluate ridge estimator in linear mixed model. Kuran and Özkale [19] obtained the mixed and stochastic restricted ridge predictors by using Gilmour approach. They introduced “stochastic linear restriction as <math display="inline">r=</math><math>R\beta +\Phi</math> where <math display="inline">r</math> is an <math display="inline">m\times 1</math> vector, <math display="inline">\mathit{\boldsymbol{R}}</math> is an <math display="inline">m\times p</math> known matrix of rank <math display="inline">m\leq p</math> and <math display="inline">\Phi</math> is an <math display="inline">m\times 1</math> random vector that is assumed to be distributed with <math display="inline">E(\Phi )=</math><math>0</math> and <math display="inline">\mathrm{Var}\,(\Phi )={\sigma }^{2}\mathit{\boldsymbol{V}}(\mathit{\boldsymbol{v}}),</math> where <math display="inline">v</math> is <math display="inline">v\times 1</math> vector of variance parameters corresponding to <math display="inline">\Phi .</math> Also <math display="inline">\Phi</math> and <math display="inline">\epsilon</math> are independent” |
Then derived the stochastic restricted estimator of <math display="inline">\beta</math> and the stochastic restricted predictor of <math display="inline">\mathit{\boldsymbol{u}}</math> respectively, as | Then derived the stochastic restricted estimator of <math display="inline">\beta</math> and the stochastic restricted predictor of <math display="inline">\mathit{\boldsymbol{u}}</math> respectively, as | ||
Line 129: | Line 140: | ||
{| style="text-align: center; margin:auto;" | {| style="text-align: center; margin:auto;" | ||
|- | |- | ||
− | | <math>{\epsilon }_{0}\sim N\left( 0,{I}_{\ast }\right) | + | | <math>{\epsilon }_{0}\sim N\left( 0,{I}_{\ast }\right)</math> |
|} | |} | ||
|} | |} | ||
− | + | with | |
+ | |||
+ | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
+ | |- | ||
+ | | | ||
+ | {| style="text-align: center; margin:auto;" | ||
+ | |- | ||
+ | |<math>\begin{array}{lll} | ||
+ | {I}_{\ast }={\sigma }^{2}{I}_{p}, & \quad {y}_{\ast }=\left[ \begin{matrix}y\\(d-k)\tilde{\beta }(k)\end{matrix}\right] ,& \quad {X}_{\ast }=\left[ \begin{matrix}X\\{I}_{p}\end{matrix}\right] ,\\ | ||
+ | {Z}_{\star }=\left[ \begin{matrix}Z\\0\end{matrix}\right] ,& \quad {\epsilon }_{\ast }=\left[ \begin{matrix}\epsilon \\{\epsilon }_{0}\end{matrix}\right], &\quad {W}_{\star }=\left[ \begin{matrix}W&0\\0&{I}_{\star }\end{matrix}\right]\end{array}</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | Then <math display="inline">u</math> and <math display="inline">{y}_{\ast }</math> are jointly distributed as | ||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
Line 150: | Line 174: | ||
|} | |} | ||
− | The penalized log-likelihood function is obtained by succession <math display="inline">{y}_{\ast },{X}_{\ast },{Z}_{\ast }</math> and <math display="inline">{W}_{+in}</math> <math display="inline">{\left( {y}_{\ast }-{X}_{\ast }\beta -{Z}_{\ast }u\right) }^{'}{W}_{\ast }^{-1}\left( {y}_{\ast }-\right. </math><math>\left. {X}_{\ast }\beta -{Z}_{\ast }u\right) ,</math> as follows: | + | The penalized log-likelihood function is obtained by succession <math display="inline">{y}_{\ast },{X}_{\ast },{Z}_{\ast }</math> and <math display="inline">{W}_{+in}</math> <math display="inline">{\left( {y}_{\ast }-{X}_{\ast }\beta -{Z}_{\ast }u\right) }^{'}{W}_{\ast }^{-1}\left( {y}_{\ast }-\right). </math><math>\left. {X}_{\ast }\beta -{Z}_{\ast }u\right) ,</math> as follows: |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 185: | Line 209: | ||
|} | |} | ||
− | By solving the Eq. (5),\tilde{u}(k,d) is | + | By solving the Eq. (5),<math>\tilde{u}(k,d)</math> is |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 198: | Line 222: | ||
|} | |} | ||
− | Using <math display="inline">\tilde{u}(k,d)</math> into | + | Using <math display="inline">\tilde{u}(k,d)</math> into Eq. (4) we get |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 236: | Line 260: | ||
|} | |} | ||
− | Due to <math display="inline">\left( {Z}^{'}{W}^{-1}Z+ | + | Due to <math display="inline">\left( {Z}^{'}{W}^{-1}Z+ {G}^{-1}\right) G{Z}^{'}={Z}^{'}{W}^{-1}ZG{Z}^{'}+{Z}^{'}={Z}^{'}{W}^{-1}\left( ZG{Z}^{'}+ W\right) ={Z}^{'}{W}^{-1}H,</math> we get |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 248: | Line 272: | ||
|} | |} | ||
− | Using Eq. (10), <math display="inline">\tilde{u}(k,d)</math> equals to <math display="inline">\tilde{u}(k,d)= | + | Using Eq. (10), <math display="inline">\tilde{u}(k,d)</math> equals to <math display="inline">\tilde{u}(k,d)=GZ{H}^{-1}(y-X\tilde{\beta }(k,d))</math>. |
− | In section, we obtain the stochastic restricted two parameter estimation. For this, the stochastic Linear restrictions <math display="inline">r= | + | In section, we obtain the stochastic restricted two parameter estimation. For this, the stochastic Linear restrictions <math display="inline">r=R\beta +\Phi</math> can be unified to model (1) and the restriction <math display="inline">(d-k)\tilde{\beta },(k)=\beta +{\epsilon }_{0}</math> to give |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 257: | Line 281: | ||
{| style="text-align: center; margin:auto;" | {| style="text-align: center; margin:auto;" | ||
|- | |- | ||
− | | <math display="inline">{\mathit{\boldsymbol{y}}}_{{r}^{\star }}={\mathit{\boldsymbol{X}}}_{{r}^{\star }}\mathit{\boldsymbol{\beta }}+ | + | | <math display="inline">{\mathit{\boldsymbol{y}}}_{{r}^{\star }}={\mathit{\boldsymbol{X}}}_{{r}^{\star }}\mathit{\boldsymbol{\beta }}+{\mathit{\boldsymbol{Z}}}_{r}\mathit{\boldsymbol{u}}+{\mathit{\boldsymbol{\epsilon }}}_{\ast ,}</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" | (11) | | style="width: 5px;text-align: right;white-space: nowrap;" | (11) | ||
|} | |} | ||
− | where | + | where |
+ | |||
+ | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
+ | |- | ||
+ | | | ||
+ | {| style="text-align: center; margin:auto;" | ||
+ | |- | ||
+ | |<math>{y}_{{r}^{\ast }}=\left[ \begin{matrix}y\\(d-k){\tilde{\beta }}_{r}(k)\\r\end{matrix}\right] ,\quad {X}_{{r}^{\ast }}=\left[ \begin{matrix}X\\{I}_{p}\\R\end{matrix}\right] ,\quad {Z}_{{r}^{\ast }}=\left[ \begin{matrix}Z\\0\\0\end{matrix}\right] ,\quad{\epsilon }_{{r}^{\ast }}=\left[ \begin{matrix}\epsilon \\{\epsilon }_{0}\\\Phi \end{matrix}\right], \quad{W}_{{r}^{\star }}=\left[ \begin{matrix}W&0&0\\0&{I}_{\ast }&0\\0&0&V\end{matrix}\right]</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | Then, the conditional distribution of <math display="inline">{y}_{\ast }</math> given <math display="inline">\mathit{\boldsymbol{u}}</math> is <math display="inline">{\mathit{\boldsymbol{y}}}_{{r}^{\ast }}\mid \mathit{\boldsymbol{u}}\sim \mathit{\boldsymbol{N}}\left( {\mathit{\boldsymbol{X}}}_{{r}^{\ast }}\mathit{\boldsymbol{\beta }}+ {\mathit{\boldsymbol{Z}}}_{{r}^{\ast }}\mathit{\boldsymbol{u}},{\mathit{\boldsymbol{W}}}_{{r}^{\ast }}\right)</math> and the logarithm joint density of <math display="inline">{y}_{r}</math> and <math display="inline">u</math> given by | ||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 271: | Line 306: | ||
− | Substituting <math display="inline">{y}_{r},{X}_{{r}^{\ast }}{Z}_{{r}^{\ast }}</math> and <math display="inline">{W}_{{r}^{+}}</math> to <math display="inline">{\left( {y}_{{r}^{\ast }}-{X}_{{r}^{\ast }}\beta -{Z}_{{r}^{\ast }}u\right) }^{'}{W}_{{\gamma }^{\ast }}^{-1}\left( {y}_{{r}^{\ast }}- | + | Substituting <math display="inline">{y}_{r},{X}_{{r}^{\ast }}{Z}_{{r}^{\ast }}</math> and <math display="inline">{W}_{{r}^{+}}</math> to <math display="inline">{\left( {y}_{{r}^{\ast }}-{X}_{{r}^{\ast }}\beta -{Z}_{{r}^{\ast }}u\right) }^{'}{W}_{{\gamma }^{\ast }}^{-1}\left( {y}_{{r}^{\ast }}- {X}_{{r}^{\ast }}\beta -{Z}_{{r}^{\ast }}u\right)</math>, the penalized log-likelihood function is obtained as follows: |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 332: | Line 367: | ||
==3. Estimation of variance parameters== | ==3. Estimation of variance parameters== | ||
− | In linear mixed models, the variance parameter within <math display="inline">G</math> and <math display="inline">W</math> are often unknown that several methods have been proposed by | + | In linear mixed models, the variance parameter within <math display="inline">G</math> and <math display="inline">W</math> are often unknown that several methods have been proposed by [16,20-22] |
+ | to estimate them. In this section, we estimate the variance parameters using the ML method. The marginal distribution of <math display="inline">{y}_{\ast }</math> is <math display="inline">N\left( \mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }},{\sigma }^{2}{\mathit{\boldsymbol{H}}}_{\ast }\right)</math>, therefore we can write the marginal log-likelihood function of <math display="inline">\mathit{\boldsymbol{y}}</math> | ||
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 339: | Line 375: | ||
{| style="text-align: center; margin:auto;width: 100%;" | {| style="text-align: center; margin:auto;width: 100%;" | ||
|- | |- | ||
− | | style="text-align: center;" | <math>{l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }},{\mathit{\boldsymbol{y}}}_{\ast }\right) =</math><math>\frac{-1}{2{\sigma }^{2}}\left\{ {\left( {\mathit{\boldsymbol{y}}}_{\ast }-{\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}\right) }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}\left( {\mathit{\boldsymbol{y}}}_{\ast }-\right. \right. </math><math>\left. \left. {\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}\right) \right\} -</math><math>\frac{n+p}{2}\mathrm{ln}\,\left( 2\pi {\mathit{\boldsymbol{\sigma }}}^{2}\right) -</math><math>\frac{1}{2}\mathrm{ln}\,\left| {\mathit{\boldsymbol{H}}}_{\ast }\right| </math> | + | | style="text-align: center;" | <math>{l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }},{\mathit{\boldsymbol{y}}}_{\ast }\right) =</math><math>\displaystyle\frac{-1}{2{\sigma }^{2}}\left\{ {\left( {\mathit{\boldsymbol{y}}}_{\ast }-{\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}\right) }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}\left( {\mathit{\boldsymbol{y}}}_{\ast }-\right. \right. </math><math>\left. \left. {\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}\right) \right\} -</math><math>\frac{n+p}{2}\mathrm{ln}\,\left( 2\pi {\mathit{\boldsymbol{\sigma }}}^{2}\right) -</math><math> \displaystyle\frac{1}{2}\mathrm{ln}\,\left| {\mathit{\boldsymbol{H}}}_{\ast }\right| </math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" |(17) | | style="width: 5px;text-align: right;white-space: nowrap;" |(17) | ||
|} | |} | ||
− | where <math display="inline">\phi ={\left( {\mathit{\boldsymbol{K}}}^{'},{\sigma }^{2}\right) }^{'},\mathit{\boldsymbol{k}}= | + | where <math display="inline">\phi ={\left( {\mathit{\boldsymbol{K}}}^{'},{\sigma }^{2}\right) }^{'},\mathit{\boldsymbol{k}}={\left( {\zeta }^{'},{\xi }^{'}\right) }^{'}</math> and <math display="inline">\left( {r}_{1}+{r}_{2}+1\right) \times 1</math> and <math display="inline">\left( {r}_{1}+ {r}_{2}\right) \times 1</math> are vectors of unknown parameters, respectively. Differentiating the Eq. (17) with respect to <math display="inline">\beta ,{\sigma }^{2}</math> and <math display="inline">{\kappa }_{j}=</math><math>1,\ldots ,{r}_{1}+{r}_{2}</math> the partial derivatives is obtained as |
{| class="formulaSCP" style="width: 100%; text-align: left;" | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
Line 351: | Line 387: | ||
{| style="text-align: center; margin:auto;width: 100%;" | {| style="text-align: center; margin:auto;width: 100%;" | ||
|- | |- | ||
− | | style="text-align: center;" | <math>\frac{\partial {l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }};{\mathit{\boldsymbol{y}}}_{\ast }\right) }{\partial \mathit{\boldsymbol{\beta }}}=</math><math>\frac{-1}{{\sigma }^{2}}\left( {\mathit{\boldsymbol{X}}}_{\ast }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}-\right. </math><math>\left. {\mathit{\boldsymbol{X}}}_{\ast }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\mathit{\boldsymbol{y}}}_{\ast }\right) ,</math> | + | | style="text-align: center;" | <math>\displaystyle\frac{\partial {l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }};{\mathit{\boldsymbol{y}}}_{\ast }\right) }{\partial \mathit{\boldsymbol{\beta }}}=</math><math>\displaystyle\frac{-1}{{\sigma }^{2}}\left( {\mathit{\boldsymbol{X}}}_{\ast }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}-\right. </math><math>\left. {\mathit{\boldsymbol{X}}}_{\ast }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\mathit{\boldsymbol{y}}}_{\ast }\right) ,</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" |(18) | | style="width: 5px;text-align: right;white-space: nowrap;" |(18) | ||
Line 361: | Line 397: | ||
{| style="text-align: center; margin:auto;width: 100%;" | {| style="text-align: center; margin:auto;width: 100%;" | ||
|- | |- | ||
− | | style="text-align: center;" |<math>\frac{\partial {l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }};{\mathit{\boldsymbol{y}}}_{\ast }\right) }{\partial {\sigma }^{2}}=</math><math>\frac{-(n+p)}{2{\sigma }^{2}}+\frac{{\left( {\mathit{\boldsymbol{y}}}_{\ast }-\mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }}\right) }^{'}{\mathit{\boldsymbol{H}}}_{\cdot }^{-1}\left( {\mathit{\boldsymbol{y}}}_{\ast }-\mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }}\right) }{2{\sigma }^{4}},</math> | + | | style="text-align: center;" |<math>\displaystyle\frac{\partial {l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }};{\mathit{\boldsymbol{y}}}_{\ast }\right) }{\partial {\sigma }^{2}}=</math><math>\displaystyle\frac{-(n+p)}{2{\sigma }^{2}}+\displaystyle\frac{{\left( {\mathit{\boldsymbol{y}}}_{\ast }-\mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }}\right) }^{'}{\mathit{\boldsymbol{H}}}_{\cdot }^{-1}\left( {\mathit{\boldsymbol{y}}}_{\ast }-\mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }}\right) }{2{\sigma }^{4}},</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" |(19) | | style="width: 5px;text-align: right;white-space: nowrap;" |(19) | ||
Line 371: | Line 407: | ||
{| style="text-align: center; margin:auto;width: 100%;" | {| style="text-align: center; margin:auto;width: 100%;" | ||
|- | |- | ||
− | | style="text-align: center;" |<math>\frac{\partial {l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }};{\mathit{\boldsymbol{y}}}_{\ast }\right) }{\partial {\kappa }_{i}}=</math><math>\frac{-1}{2}\mathrm{tr}\,\left( {\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\dot{\mathit{\boldsymbol{H}}}}_{{\ast }_{j}}\right) +</math><math>\frac{{\left( {\mathit{\boldsymbol{y}}}_{\ast }-{\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}\right) }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\dot{\mathit{\boldsymbol{H}}}}_{\ast }{\mathit{\boldsymbol{H}}}_{\ast }^{-1}\left( {\mathit{\boldsymbol{y}}}_{\ast }-\mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }}\right) }{2{\sigma }^{2}} </math> | + | | style="text-align: center;" |<math>\displaystyle\frac{\partial {l}_{ML}\left( \mathit{\boldsymbol{\beta }},\mathit{\boldsymbol{\phi }};{\mathit{\boldsymbol{y}}}_{\ast }\right) }{\partial {\kappa }_{i}}=</math><math>\displaystyle\frac{-1}{2}\mathrm{tr}\,\left( {\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\dot{\mathit{\boldsymbol{H}}}}_{{\ast }_{j}}\right) +</math><math>\displaystyle\frac{{\left( {\mathit{\boldsymbol{y}}}_{\ast }-{\mathit{\boldsymbol{X}}}_{\ast }\mathit{\boldsymbol{\beta }}\right) }^{'}{\mathit{\boldsymbol{H}}}_{\ast }^{-1}{\dot{\mathit{\boldsymbol{H}}}}_{\ast }{\mathit{\boldsymbol{H}}}_{\ast }^{-1}\left( {\mathit{\boldsymbol{y}}}_{\ast }-\mathit{\boldsymbol{X}}\cdot \mathit{\boldsymbol{\beta }}\right) }{2{\sigma }^{2}} </math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" |(20) | | style="width: 5px;text-align: right;white-space: nowrap;" |(20) | ||
Line 403: | Line 439: | ||
{| style="text-align: center; margin:auto;width: 100%;" | {| style="text-align: center; margin:auto;width: 100%;" | ||
|- | |- | ||
− | | style="text-align: center;" |<math>(\mathrm{tr}\,\left( {\tilde{H}}_{\ast }^{-1}{\tilde{H}}_{\ast j}\right) =\frac{{\left( {y}_{\star }-{X}_{\ast }\tilde{\beta }\left( k,d\right) \right) }^{'}{\tilde{H}}_{\ast }^{-1}{\tilde{H}}_{\ast j}{\tilde{H}}_{\ast }^{-1}\left( {y}_{\star }-{X}_{\star }\tilde{\beta }\left( k,d\right) \right) }{{\tilde{\sigma }}^{2}\left( k,d\right) }</math> | + | | style="text-align: center;" |<math>(\mathrm{tr}\,\left( {\tilde{H}}_{\ast }^{-1}{\tilde{H}}_{\ast j}\right) =\displaystyle\frac{{\left( {y}_{\star }-{X}_{\ast }\tilde{\beta }\left( k,d\right) \right) }^{'}{\tilde{H}}_{\ast }^{-1}{\tilde{H}}_{\ast j}{\tilde{H}}_{\ast }^{-1}\left( {y}_{\star }-{X}_{\star }\tilde{\beta }\left( k,d\right) \right) }{{\tilde{\sigma }}^{2}\left( k,d\right) }</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" |(23) | | style="width: 5px;text-align: right;white-space: nowrap;" |(23) | ||
Line 438: | Line 474: | ||
==4. Comparison of estimators== | ==4. Comparison of estimators== | ||
− | In this section, we compare the estimator <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> with <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and the estimator <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> with <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}</math> using the mean squares error matrix (MSEM) sense. The estimator <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{2}</math> is superior to <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{1}</math> with respect to the MSEM sense, if and only if <math display="inline">\Delta \left( {\tilde{\beta }}_{1},{\tilde{\beta }}_{2}\right) =</math><math>MSEM\left( {\tilde{\beta }}_{1}\right) -MSEM\left( {\tilde{\beta }}_{2}\right) >0,</math> that is, | + | In this section, we compare the estimator <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> with <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and the estimator <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> with <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}</math> using the mean squares error matrix (MSEM) sense. The estimator <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{2}</math> is superior to <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{1}</math> with respect to the MSEM sense, if and only if <math display="inline">\Delta \left( {\tilde{\beta }}_{1},{\tilde{\beta }}_{2}\right) =</math><math>MSEM\left( {\tilde{\beta }}_{1}\right) -MSEM\left( {\tilde{\beta }}_{2}\right) >0,</math> that is, <math display="inline">\Delta \left( {\tilde{\beta }}_{1},{\tilde{\beta }}_{2}\right)</math> is a positive definite (pd) matrix. The mean-square error matrix for the estimator <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> is given as |
− | {| class="formulaSCP" style="width: 100%; text-align: | + | |
+ | {| class="formulaSCP" style="width: 100%; text-align: left;" | ||
|- | |- | ||
− | | <math>\mathrm{MSEM}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d),\mathit{\boldsymbol{\beta }})=\mathrm{Var}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))+\mathrm{bias}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))\mathrm{bias}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d){)}^{'}</math> | + | | |
+ | {| style="text-align: center; margin:auto;width: 100%;" | ||
+ | |- | ||
+ | | style="text-align: center;" | <math>\mathrm{MSEM}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d),\mathit{\boldsymbol{\beta }})=\mathrm{Var}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))+\mathrm{bias}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))\mathrm{bias}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d){)}^{'}</math> | ||
+ | |} | ||
|} | |} | ||
− | |||
The variance matrix of <math display="inline">\tilde{\beta }(k,d)</math> is | The variance matrix of <math display="inline">\tilde{\beta }(k,d)</math> is | ||
Line 450: | Line 490: | ||
| <math>V~ar~(\tilde{\beta }(k,d))={\sigma }^{2}{T}_{1}{X}^{'}{H}^{-1}X{T}_{1}^{'}</math> | | <math>V~ar~(\tilde{\beta }(k,d))={\sigma }^{2}{T}_{1}{X}^{'}{H}^{-1}X{T}_{1}^{'}</math> | ||
|} | |} | ||
− | |||
where <math display="inline">{T}_{1}={\left( {X}^{'}{H}^{-1}X+{I}_{p}\right) }^{-1}\left( {X}^{'}{H}^{-1}X+\right. </math><math>\left. d{I}_{p}\right) {\left( {X}^{'}{H}^{-1}X+k{I}_{p}\right) }^{-1}.</math> The bias <math display="inline">(\tilde{\beta }(k,d))</math> is given as | where <math display="inline">{T}_{1}={\left( {X}^{'}{H}^{-1}X+{I}_{p}\right) }^{-1}\left( {X}^{'}{H}^{-1}X+\right. </math><math>\left. d{I}_{p}\right) {\left( {X}^{'}{H}^{-1}X+k{I}_{p}\right) }^{-1}.</math> The bias <math display="inline">(\tilde{\beta }(k,d))</math> is given as | ||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
− | | <math> | + | | bias <math>(\tilde{\beta }(k,d))=E(\tilde{\beta }(k,d)-\beta )=-{\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+{\mathit{\boldsymbol{I}}}_{p}\right) }^{-1}{\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+k{\mathit{\boldsymbol{I}}}_{p}\right) }^{-1}\left( (k+1-\right. </math><math>\left. d)\mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+\right. </math><math>\left. k{\mathit{\boldsymbol{I}}}_{p}\right) \mathit{\boldsymbol{\beta }}</math> |
|} | |} | ||
− | {|class="formulaSCP" style="width: 100%; text-align: center;" | + | |
+ | The mean-square error matrix for the estimator <math display="inline">{\tilde{\beta }}_{r}(k,d)</math> is given as | ||
+ | |||
+ | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
− | | <math> | + | | <math>\mathrm{MSEM}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d),\mathit{\boldsymbol{\beta }}\right) =</math><math>{\sigma }^{2}{\mathit{\boldsymbol{T}}}_{2}\left( {\mathit{\boldsymbol{X}}}^{'}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+\right. </math><math>\left. {\mathit{\boldsymbol{R}}}^{'}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}\right) {\mathit{\boldsymbol{T}}}_{2}^{'}+\mathrm{bias}\,\left( {\mathit{\boldsymbol{\beta }}}_{r}(k,d)\right) \mathrm{bias}\,{\left( {\mathit{\boldsymbol{\beta }}}_{r}(k,d)\right) }^{'}</math> |
|} | |} | ||
− | + | ||
+ | where | ||
+ | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
− | | <math>\ | + | | <math>{\mathit{\boldsymbol{T}}}_{2}={\left( {\mathit{\boldsymbol{X}}}^{'}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+{\mathit{\boldsymbol{R}}}^{'}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}+{\mathit{\boldsymbol{I}}}_{p}\right) }^{-1}\left( {\mathit{\boldsymbol{X}}}^{'}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+\right. </math><math>\left. {\mathit{\boldsymbol{R}}}^{'}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}+\right. </math><math>\left. d{\mathit{\boldsymbol{I}}}_{p}\right) {\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+{\mathit{\boldsymbol{R}}}^{\boldsymbol{'}}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}+\mathit{\boldsymbol{k}}{\mathit{\boldsymbol{I}}}_{p}\right) }^{-1}</math> |
|} | |} | ||
− | + | and | |
+ | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
− | | <math>\ | + | | <math>\begin{array}{ll}{\rm bias}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)\right) & =-{\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+{\mathit{\boldsymbol{R}}}^{'}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}+{\mathit{\boldsymbol{I}}}_{p}\right) }^{-1}{\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+{\mathit{\boldsymbol{R}}}^{'}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}+k{\mathit{\boldsymbol{I}}}_{p}\right) }^{-1}\\ |
+ | & \times \left( (k+1-d)\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}+ {\mathit{\boldsymbol{R}}}^{'}{\mathit{\boldsymbol{V}}}^{-1}\mathit{\boldsymbol{R}}\right) + k{\mathit{\boldsymbol{I}}}_{p}\right) \mathit{\boldsymbol{\beta }}\end{array}</math> | ||
|} | |} | ||
− | ===4.1 | + | ===4.1 Comparison the Estimator ''β̃''(''k'',''d'') with ''β̃''=== |
+ | |||
+ | The <math display="inline">MSEM</math> of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> is <math display="inline">\mathrm{MSEM}\,(\tilde{\mathit{\boldsymbol{\beta }}})=</math><math>{\sigma }^{2}{\mathit{\boldsymbol{A}}}^{-1},</math> where <math display="inline">{\mathit{\boldsymbol{A}}}_{1}=</math><math>\left( \mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}\right) ,</math> and the <math display="inline">MSEM</math> of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> is | ||
− | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
Line 482: | Line 529: | ||
− | The estimator <math display="inline">\tilde{\beta }(k,d)</math> is superior to the estimator <math display="inline">\tilde{\beta }</math> under the MSEM sense, if and only if | + | The estimator <math display="inline">\tilde{\beta }(k,d)</math> is superior to the estimator <math display="inline">\tilde{\beta }</math> under the MSEM sense, if and only if <math display="inline">\mathrm{MSEM}\,(\tilde{\mathit{\boldsymbol{\beta }}})-\mathrm{MSEM}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))>0</math> then |
+ | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
Line 489: | Line 537: | ||
− | According to Farebrother <math display="inline">(1976),</math> if <math display="inline">{\sigma }^{2}\left( {A}_{1}^{-1}-\right. </math><math>\left. {T}_{1}{A}_{1}{T}_{1}\right) >0,</math> then the necessary and sufficient condition for <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> to be superior to <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> is <math display="inline">{\mathit{\boldsymbol{\beta }}}^{'}{\left( {\mathit{\boldsymbol{T}}}_{1}{\mathit{\boldsymbol{A}}}_{1}-{\mathit{\boldsymbol{I}}}_{p}\right) }^{'}{\left[ {\sigma }^{2}\left( {\mathit{\boldsymbol{A}}}_{1}^{-1}-{\mathit{\boldsymbol{T}}}_{1}{\mathit{\boldsymbol{A}}}_{1}{\mathit{\boldsymbol{T}}}_{1}\right) \right] }^{-1}\left( {\mathit{\boldsymbol{T}}}_{1}{\mathit{\boldsymbol{A}}}_{1}-\right. </math><math>\left. {\mathit{\boldsymbol{I}}}_{p}\right) \mathit{\boldsymbol{\beta }}<1</math> | + | According to Farebrother <math display="inline">(1976),</math> if <math display="inline">{\sigma }^{2}\left( {A}_{1}^{-1}-\right. </math><math>\left. {T}_{1}{A}_{1}{T}_{1}\right) >0,</math> then the necessary and sufficient condition for <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> to be superior to <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> is <math display="inline">{\mathit{\boldsymbol{\beta }}}^{'}{\left( {\mathit{\boldsymbol{T}}}_{1}{\mathit{\boldsymbol{A}}}_{1}-{\mathit{\boldsymbol{I}}}_{p}\right) }^{'}{\left[ {\sigma }^{2}\left( {\mathit{\boldsymbol{A}}}_{1}^{-1}-{\mathit{\boldsymbol{T}}}_{1}{\mathit{\boldsymbol{A}}}_{1}{\mathit{\boldsymbol{T}}}_{1}\right) \right] }^{-1}\left( {\mathit{\boldsymbol{T}}}_{1}{\mathit{\boldsymbol{A}}}_{1}-\right. </math><math>\left. {\mathit{\boldsymbol{I}}}_{p}\right) \mathit{\boldsymbol{\beta }}<1</math>. |
− | ==5. Selection of | + | ==5. Selection of parameters '''''k''''' and '''''d'''''== |
− | + | In the linear regression model, choosing the parameter <math display="inline">k</math> is important so many statisticians were suggested several methods for obtaining this parameter. These methods were proposed by many researchers [23-29] and others. According to Ozkale and Can [18], we rewrite model (1) in the form of a marginal model in which random effects are not explicitly defined: | |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 506: | Line 554: | ||
− | Because <math display="inline">\mathit{\boldsymbol{H}}</math> is pd, then there is a nonsingular symmetric matrix <math display="inline">\mathit{\boldsymbol{N}}</math> such that <math display="inline">\mathit{\boldsymbol{H}}=</math><math>{\mathit{\boldsymbol{N}}}^{'}\mathit{\boldsymbol{N}}</math>. If we multiply both sides of model (42) by <math display="inline">{\boldsymbol{N}}^{-1}</math>, we get <math display="inline">{\mathit{\boldsymbol{y}}}^{\ast }=</math><math>{\mathit{\boldsymbol{X}}}^{\ast }\mathit{\boldsymbol{\beta }}+{\mathit{\boldsymbol{S}}}^{\ast }</math>, where <math display="inline">\dot{\mathit{\boldsymbol{y}}}= | + | Because <math display="inline">\mathit{\boldsymbol{H}}</math> is pd, then there is a nonsingular symmetric matrix <math display="inline">\mathit{\boldsymbol{N}}</math> such that <math display="inline">\mathit{\boldsymbol{H}}=</math><math>{\mathit{\boldsymbol{N}}}^{'}\mathit{\boldsymbol{N}}</math>. If we multiply both sides of model (42) by <math display="inline">{\boldsymbol{N}}^{-1}</math>, we get <math display="inline">{\mathit{\boldsymbol{y}}}^{\ast }=</math><math>{\mathit{\boldsymbol{X}}}^{\ast }\mathit{\boldsymbol{\beta }}+{\mathit{\boldsymbol{S}}}^{\ast }</math>, where <math display="inline">\dot{\mathit{\boldsymbol{y}}}={\mathit{\boldsymbol{N}}}^{-1}\mathit{\boldsymbol{y}},{\mathit{\boldsymbol{X}}}^{\ast }=</math><math>{\mathit{\boldsymbol{N}}}^{-1}\mathit{\boldsymbol{X}}</math>, |
+ | <math display="inline">{\mathit{\boldsymbol{S}}}^{\ast }={\mathit{\boldsymbol{N}}}^{-1}\mathit{\boldsymbol{S}}</math> and <math display="inline">\mathrm{Var}\,\left( {\mathit{\boldsymbol{S}}}^{\ast }\right) ={\mathit{\boldsymbol{I}}}_{n}</math>. The matrix <math display="inline">{\mathit{\boldsymbol{X}}}^{\ast }{\mathit{\boldsymbol{X}}}^{\ast }=</math><math>{\mathit{\boldsymbol{X}}}^{'}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}</math> is symmetric, so there is an orthogonal matrix <math display="inline">\mathit{\boldsymbol{P}}</math> such that <math display="inline">{\mathit{\boldsymbol{P}}}^{'}\mathit{\boldsymbol{P}}=</math><math>\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{P}}}^{'}={\mathit{\boldsymbol{I}}}_{p}</math> and <math display="inline">{\mathit{\boldsymbol{P}}}^{'}{\mathit{\boldsymbol{X}}}^{\ast }{\mathit{\boldsymbol{X}}}^{\ast }\mathit{\boldsymbol{P}}=</math><math>\boldsymbol{\Lambda }=\mathrm{diag}\,\left( {\lambda }_{1},\ldots ,{\lambda }_{p}\right) ,</math> where | ||
+ | <math display="inline">{\lambda }_{1}\geq {\lambda }_{2}\geq \ldots \geq {\lambda }_{p}</math> are the ordered eigenvalues of <math display="inline">{\mathit{\boldsymbol{X}}}^{\ast }{\mathit{\boldsymbol{X}}}^{\ast }</math>. Then model (26) can be rewritten in a canonical form as <math display="inline">{\mathit{\boldsymbol{y}}}^{\ast }=</math><math>{\mathit{\boldsymbol{X}}}^{\ast \ast }\mathit{\boldsymbol{\gamma }}+{\mathit{\boldsymbol{S}}}^{\ast }</math>, where <math display="inline">{\mathit{\boldsymbol{X}}}^{\ast \ast }=</math><math>{\mathit{\boldsymbol{X}}}^{\ast }\mathit{\boldsymbol{P}}</math> and <math display="inline">\mathit{\boldsymbol{\gamma }}=</math><math>{\mathit{\boldsymbol{P}}}^{'}\mathit{\boldsymbol{\beta }}''</math>. Under this model, we get the following representation: | ||
+ | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
Line 512: | Line 563: | ||
|} | |} | ||
+ | We use <math display="inline">\mathrm{MSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d),\mathit{\boldsymbol{\beta }})</math> to find the optimal values of <math display="inline">k</math> and <math display="inline">d</math>, where <math display="inline">\mathrm{MSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d),\mathit{\boldsymbol{\beta }})</math> is the mean square error. Let <math display="inline">d</math> fixed, the optimal value of the <math display="inline">k</math> can be obtained by minimizing the following statement | ||
− | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
Line 519: | Line 570: | ||
|} | |} | ||
− | + | Notice that <math display="inline">\mathrm{MSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d),\mathit{\boldsymbol{\beta }})=\mathrm{MSE}\,(\tilde{\gamma }(k,d),\gamma )=\mathrm{tr}\,[\mathrm{MSEM}\,(\tilde{\gamma }(k,d),\gamma )].</math> Therefore, getting <math display="inline">\displaystyle\frac{\partial \mathrm{MSE}\,(\tilde{\gamma }(k,d),\gamma )}{\partial k}=</math><math>0,</math> we obtain <math display="inline">k=\displaystyle\frac{{\sigma }^{2}\left( {\lambda }_{i}+d\right) -{\lambda }_{i}{\gamma }_{i}^{2}(1-d)}{{\gamma }_{i}^{2}\left( {\lambda }_{j}+1\right) }.</math> Since the optimal <math display="inline">k</math> depends on unknown <math display="inline">\gamma</math> and <math display="inline">{\sigma }^{2},</math> then according Hoerl and Kennard [9] we can get the estimate of <math display="inline">k</math> by substituting <math display="inline">\tilde{\gamma }</math> and <math display="inline">{\tilde{\sigma }}^{2}</math> as follows: | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | depends on unknown <math display="inline">\gamma</math> and <math display="inline">{\sigma }^{2},</math> then according Hoerl and Kennard [9] we can get the estimate of <math display="inline">k</math> by substituting <math display="inline">\tilde{\gamma }</math> and <math display="inline">{\tilde{\sigma }}^{2}</math> as follows: | + | |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 531: | Line 577: | ||
{| style="text-align: center; margin:auto;" | {| style="text-align: center; margin:auto;" | ||
|- | |- | ||
− | | <math display="inline">\tilde{k}=\frac{{\tilde{\sigma }}^{2}\left( {\lambda }_{i}+d\right) -{\lambda }_{i}{\tilde{\gamma }}_{i}^{2}(1-d)}{{\tilde{\gamma }}_{i}^{2}\left( {\lambda }_{i}+1\right) }</math> | + | | <math display="inline">\tilde{k}=\displaystyle\frac{{\tilde{\sigma }}^{2}\left( {\lambda }_{i}+d\right) -{\lambda }_{i}{\tilde{\gamma }}_{i}^{2}(1-d)}{{\tilde{\gamma }}_{i}^{2}\left( {\lambda }_{i}+1\right) }</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" | (27) | | style="width: 5px;text-align: right;white-space: nowrap;" | (27) | ||
|} | |} | ||
+ | where <math display="inline">\tilde{\gamma }</math> and <math display="inline">{\tilde{\sigma }}^{2}</math> are the unbiased estimators <math display="inline">\mathit{\boldsymbol{\gamma }}</math> and <math display="inline">{\sigma }^{2}</math>. According to the estimator of <math display="inline">k,</math> which Kibria [25] and Hoerl and Kennard [9] proposed, the harmonic mean value of <math display="inline">k</math> in (27) is | ||
− | + | Now, let <math display="inline">k</math> fixed, and we get the optimal value <math display="inline">d</math> by minimizing <math display="inline">\mathrm{MSE}\,(\tilde{\gamma }(k,d),\gamma )</math>. Therefore getting <math display="inline">\displaystyle\frac{\partial \mathrm{MSE}\,(\tilde{\gamma }(k,d),\gamma )}{\partial d}=</math><math>0,</math> | |
− | + | ||
− | Now, let <math display="inline">k</math> fixed, and we get the optimal value <math display="inline">d</math> by minimizing <math display="inline">\mathrm{MSE}\,(\tilde{\gamma }(k,d),\gamma )</math>. Therefore getting <math display="inline">\frac{\partial \mathrm{MSE}\,(\tilde{\gamma }(k,d),\gamma )}{\partial d}=</math><math>0,</math> | + | |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 546: | Line 591: | ||
{| style="text-align: center; margin:auto;" | {| style="text-align: center; margin:auto;" | ||
|- | |- | ||
− | | <math display="inline">{\tilde{d}}_{opt}=\frac{\sum _{i=1}^{p}\frac{[\left( \left( k+1\right) {\lambda }_{i}+k\right) {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}-\, {\lambda }_{i}^{2}{\tilde{\sigma }}^{2}\, ]}{[{(\, {\lambda }_{i}+k)}^{2}\ast {({\lambda }_{i}\, +1)}^{2}]}}{\sum _{i=1}^{p}\frac{[\left( {\tilde{\sigma }}^{2}\, +\, \, {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) {\lambda }_{i}]}{[{({\lambda }_{i}+k)}^{2}\ast {({\lambda }_{i}+1)}^{2}]}}</math> | + | | <math display="inline">{\tilde{d}}_{opt}=\displaystyle\frac{\sum _{i=1}^{p}\displaystyle\frac{[\left( \left( k+1\right) {\lambda }_{i}+k\right) {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}-\, {\lambda }_{i}^{2}{\tilde{\sigma }}^{2}\, ]}{[{(\, {\lambda }_{i}+k)}^{2}\ast {({\lambda }_{i}\, +1)}^{2}]}}{\sum _{i=1}^{p}\displaystyle\frac{[\left( {\tilde{\sigma }}^{2}\, +\, \, {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) {\lambda }_{i}]}{[{({\lambda }_{i}+k)}^{2}\ast {({\lambda }_{i}+1)}^{2}]}}</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" | (28) | | style="width: 5px;text-align: right;white-space: nowrap;" | (28) | ||
Line 552: | Line 597: | ||
− | + | Since <math display="inline">k</math> is always be positive, in this section we get the positive condition of the estimator in Eq. (27). For this purpose, we use the following theorem. | |
− | + | '''Theorem 5.1''' | |
− | for all <math display="inline">i,</math> then <math display="inline">{\tilde{k}}_{HM}</math> are always positive. | + | If <math display="inline">\tilde{d}>max\left\{ \displaystyle\frac{1-{\tilde{\sigma }}^{2}{\tilde{\gamma }}_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) }\right\}</math>, |
+ | for all <math display="inline">i,</math> then <math display="inline">{\tilde{k}}_{HM}</math> are always positive. | ||
− | + | '''Proof.''' | |
− | then the values of <math display="inline">k</math> are positive. Since | + | If <math display="inline">\displaystyle\frac{{\sigma }^{2}\left( {\lambda }_{i}+d\right) -{\lambda }_{i}{\gamma }_{i}^{2}(1-d)}{{\gamma }_{i}^{2}\left( {\lambda }_{i}+1\right) }>0</math>, then the values of <math display="inline">k</math> are positive. Since <math display="inline">{\gamma }_{i}^{2}\left( {\lambda }_{i}+1\right) >0</math> and <math display="inline">{\sigma }^{2}\left( {\lambda }_{i}+\right. </math><math>\left. d\right) -{\lambda }_{i}{\gamma }_{i}^{2}(1-d)</math> must be positive for all <math display="inline">i</math>. Then we get |
+ | <math display="inline">d>\displaystyle\frac{1-{\sigma }^{2}/{\gamma }_{i}^{2}}{1+{\sigma }^{2}/\left( {\lambda }_{i}{\gamma }_{i}^{2}\right) }</math> and because depends on the unknown parameters <math display="inline">{\gamma }_{i}^{2}</math> and <math display="inline">{\sigma }^{2},</math> so their unbiased estimators are replaced. Therefore <math display="inline">{\tilde{k}}_{HM}</math> is always positive if <math display="inline">\tilde{d}</math> is selected as <math display="inline">\tilde{d}>max\left\{ \displaystyle\frac{1-{\tilde{\sigma }}^{2}{\tilde{\gamma }}_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{j}{\tilde{\gamma }}_{i}^{2}\right) }\right\}</math>. | ||
− | + | Note that <math display="inline">\displaystyle\frac{1-{\tilde{\sigma }}^{2}/{\gamma }_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) }</math> is always less than one and since <math display="inline">d</math> must be between zero and one, we consider the inequality <math display="inline">\tilde{d}>max\left\{\displaystyle \frac{1-{\tilde{\sigma }}^{2}{\tilde{\gamma }}_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) }\right\}</math> as follows | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <math display="inline">\frac{1-{\tilde{\sigma }}^{2}/{\gamma }_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) }</math> | + | |
− | + | ||
− | is always less than one and since <math display="inline">d</math> must be between zero and one, we consider the inequality | + | |
− | + | ||
− | <math display="inline">\tilde{d}>max\left\{ \frac{1-{\tilde{\sigma }}^{2}{\tilde{\gamma }}_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) }\right\}</math> | + | |
− | + | ||
− | as follows | + | |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 587: | Line 616: | ||
{| style="text-align: center; margin:auto;" | {| style="text-align: center; margin:auto;" | ||
|- | |- | ||
− | | <math display="inline">max\left\{ \frac{1-{\tilde{\sigma }}^{2}{\tilde{\gamma }}_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) },o\right\} <\tilde{d}<1</math> | + | | <math display="inline">max\left\{\displaystyle \frac{1-{\tilde{\sigma }}^{2}{\tilde{\gamma }}_{i}^{2}}{1+{\tilde{\sigma }}^{2}/\left( {\lambda }_{i}{\tilde{\gamma }}_{i}^{2}\right) },o\right\} <\tilde{d}<1</math> |
|} | |} | ||
| style="width: 5px;text-align: right;white-space: nowrap;" | (29) | | style="width: 5px;text-align: right;white-space: nowrap;" | (29) | ||
Line 593: | Line 622: | ||
− | Since <math display="inline">{\tilde{d}}_{opt~}</math> in (28) depends on <math display="inline">k</math> and the estimators of <math display="inline">k</math> in <math display="inline">{\tilde{k}}_{HM}</math> depend on <math display="inline">d</math>, we consider an iterative method for these parameters by applying the following method. Step <math display="inline">1,</math> calculate <math display="inline">\tilde{d}</math> from (29) . Step 2, calculate <math display="inline">{\tilde{k}}_{HM}</math> by using <math display="inline">\tilde{d}</math> in step 1 . Step <math display="inline">3,</math> calculate <math display="inline">{\tilde{d}}_{opt~}</math> from ( 28 ) by using the estimator <math display="inline">{\tilde{k}}_{HM}</math> in Step 2 . Step <math display="inline">4,</math> if <math display="inline">{\tilde{d}}_{opt~}</math> is not between zero and one use <math display="inline">{\tilde{d}}_{opt~}=</math><math>\tilde{d}</math> | + | Since <math display="inline">{\tilde{d}}_{opt~}</math> in (28) depends on <math display="inline">k</math> and the estimators of <math display="inline">k</math> in <math display="inline">{\tilde{k}}_{HM}</math> depend on <math display="inline">d</math>, we consider an iterative method for these parameters by applying the following method. Step <math display="inline">1,</math> calculate <math display="inline">\tilde{d}</math> from Eq. (29). Step 2, calculate <math display="inline">{\tilde{k}}_{HM}</math> by using <math display="inline">\tilde{d}</math> in step 1 . Step <math display="inline">3,</math> calculate <math display="inline">{\tilde{d}}_{opt~}</math> from Eq. (28) by using the estimator <math display="inline">{\tilde{k}}_{HM}</math> in Step 2 . Step <math display="inline">4,</math> if <math display="inline">{\tilde{d}}_{opt~}</math> is not between zero and one use <math display="inline">{\tilde{d}}_{opt~}=</math><math>\tilde{d}</math> |
− | ==6. A | + | ==6. A simulation study== |
− | + | In this section, we compare the performance of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}},\tilde{\mathit{\boldsymbol{\beta }}}(k,d),{\tilde{\mathit{\boldsymbol{\beta }}}}_{t}</math> and <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> with a simulation study. For this purpose, we calculate the estimated mean square error (EMSE) with various values of sample size, variance and degree of collinearity. Following McDonald and Galarneau [27], we are computed the fixed effects as | |
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 609: | Line 638: | ||
|} | |} | ||
− | + | where <math display="inline">{w}_{ijc}</math> independent standard normal are pseudo-random numbers and <math display="inline">{\rho }^{2}</math> is the correlation between any two fixed effects. Three different sets of <math display="inline">{\rho }^{2}</math> were considered as 0.75,0.85 and <math display="inline">0.95.</math> The <math display="inline">\mathit{\boldsymbol{Z}}</math> matrix is produced in a completely randomized design. Observation on responses are then determined by | |
− | + | ||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
Line 623: | Line 651: | ||
− | We consider two designs that in the first design <math display="inline">{n}_{i}=</math><math>3</math> and in the second design <math display="inline">{n}_{i}=7</math>. Also, the same value <math display="inline">t=</math><math>9,p=4</math> and <math display="inline">q=9</math> are taken in both designs. Following Ozcale and Can | + | We consider two designs that in the first design <math display="inline">{n}_{i}=</math><math>3</math> and in the second design <math display="inline">{n}_{i}=7</math>. Also, the same value <math display="inline">t=</math><math>9,p=4</math> and <math display="inline">q=9</math> are taken in both designs. Following Ozcale and Can [18], the <math display="inline">\mathit{\boldsymbol{\beta }}</math> vector was chosen as the eigenvector corresponding to the largest eigenvalue of the <math display="inline">{\boldsymbol{X}}^{'}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}}</math> matrix”. The variances matrix of random effects <math display="inline">{u}_{i}</math> and <math display="inline">{\epsilon }_{ij}</math> are <math display="inline">\mathit{\boldsymbol{G}}=</math><math>{\sigma }_{1}^{2}{\mathit{\boldsymbol{I}}}_{q}</math> and <math display="inline">\mathit{\boldsymbol{W}}=</math><math>{\sigma }^{2}{\mathit{\boldsymbol{I}}}_{a}</math>, respectively. They <math display="inline">{u}_{i}</math> are generated from the normal distribution <math display="inline">N(0,G)</math>. We are considered <math display="inline">{\sigma }^{2}=</math><math>0.5,1</math> and <math display="inline">{\sigma }_{1}^{2}=0.5,1</math>.The trial was replicated 1000 times by generating <math display="inline">{u}_{i}</math> and <math display="inline">{\epsilon }_{ij}.</math> For each simulated data set derived <math display="inline">{\tilde{k}}_{HM}</math> and <math display="inline">{\tilde{d}}_{opt~},</math> and then the estimated mean squared error (EMSE) calculated as calculated the relative mean square (RMSE) as |
+ | |||
{| class="formulaSCP" style="width: 100%; text-align: center;" | {| class="formulaSCP" style="width: 100%; text-align: center;" | ||
|- | |- | ||
− | | <math>\mathrm{RMSE}\,\left( \tilde{\mathit{\boldsymbol{\beta }}}:{\tilde{\mathit{\boldsymbol{\beta }}}}^{\ast }\right) =</math><math>\frac{\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}})}{\mathrm{EMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}^{\ast }\right) } | + | | <math>\mathrm{RMSE}\,\left( \tilde{\mathit{\boldsymbol{\beta }}}:{\tilde{\mathit{\boldsymbol{\beta }}}}^{\ast }\right) =</math><math>\displaystyle\frac{\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}})}{\mathrm{EMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}^{\ast }\right) }</math> |
|} | |} | ||
− | |||
− | + | when <math display="inline">RMSE</math> is greater than one, it indicates that the estimator <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}^{\ast }</math> superior to the estimator <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math>. For the stochastic linear restriction <math display="inline">\mathit{\boldsymbol{r}}=</math><math>\mathit{\boldsymbol{R\beta }}+\Phi ,</math> the matrix <math display="inline">\mathit{\boldsymbol{R}}</math> is <math display="inline">m\times p</math> and generated from the normal distribution <math display="inline">N(0,1)</math> and the matrix <math display="inline">\Phi</math> is generated from the normal distribution <math display="inline">N(0,\mathit{\boldsymbol{V}})</math> where <math display="inline">\mathit{\boldsymbol{V}}</math> is taken as <math display="inline">=</math><math>\mathrm{diag}\,\left( {\sigma }^{2}{\mathit{\boldsymbol{I}}}_{m}\right)</math>) with <math display="inline">m=</math><math>2</math>. In [[#tab-1|Table 1]], we obtain the values of EMSE and RMSE for <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}},\tilde{\mathit{\boldsymbol{\beta }}}(k,d),{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}</math> and <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math>. We have the following results for [[#tab-1|Table 1]]: | |
− | + | (i) In the whole table, the EMSE values of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> is less than <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math>. Also, the EMSE values of <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> is less than <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}</math>. In general, the EMSE values of <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> is less than all estimators. | |
− | + | ||
− | + | (ii) As <math display="inline">{\rho }^{2}</math> and <math display="inline">{\sigma }^{2}</math> increase, the EMSE values of the estimators increase. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | (iii) As <math display="inline">{\rho }^{2}</math> increases, difference between the EMSE values of the two parameter estimators and the EMSE values of the best linear unbiased estimators increase. This implies an increase in the improvement of the two-parameter estimators. | ||
− | + | <div class="center" style="font-size: 75%;">'''Table 1'''. Estimated <math display="inline">MSE</math> and SMSE values with <math display="inline">{\tilde{k}}_{HM},{\tilde{d}}_{opt~}</math> and <math display="inline">t=</math><math>9</math></div> | |
− | + | ||
− | | | + | <div id='tab-1'></div> |
− | | | + | {| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" |
− | | style=" | + | |-style="text-align:center" |
− | | style=" | + | ! <math>p=0.75</math> !! colspan='2' |<math>\left( {\sigma }^{2},{\sigma }_{1}^{2}\right) =(0.5,0.5)</math> !! colspan='2' | <math>\left( {\sigma }^{2},{\sigma }_{1}^{2}\right) =(1,1)</math> |
− | | | + | |-style="text-align:center" |
− | | style=" | + | | ni |
− | | style=" | + | | 3 |
− | | style=" | + | | 7 |
− | | style=" | + | | 3 |
− | | style=" | + | | 7 |
− | | | + | |-style="text-align:center" |
− | | style=" | + | | <math>\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}})</math> |
− | | style=" | + | | 0.0001526 |
− | | style=" | + | | 7.3974e-05 |
− | | style=" | + | | 0.0003053 |
− | | style=" | + | | 0.0001479 |
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,\left( {\tilde{{\mathit{\boldsymbol{\beta }}}_{\mathit{\boldsymbol{r}}}}}_{\, }\right)</math> | ||
+ | | 0.0001461 | ||
+ | | 7.1668e-05 | ||
+ | | 0.0002923 | ||
+ | | 0.0001433 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))</math> | ||
+ | | 0.0001032 | ||
+ | | 6.9166e-05 | ||
+ | | 0.0001912 | ||
+ | | 0.0001332 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)\right)</math> | ||
+ | | 9.9335e-05 | ||
+ | | 6.7089e-05 | ||
+ | | 0.0001845 | ||
+ | | 0.0001293 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}:\tilde{\mathit{\boldsymbol{\beta }}}(k,d))</math> | ||
+ | | 1.4795 | ||
+ | | 1.0695 | ||
+ | | 1.5965 | ||
+ | | 1.1104 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}:{\tilde{\mathit{\boldsymbol{\beta }}}}_{c}(k,d)\right)</math> | ||
+ | | 1.4716 | ||
+ | | 1.0682 | ||
+ | | 1.5845 | ||
+ | | 1.1083 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,\left( \tilde{\mathit{\boldsymbol{\beta }}}(k,d):{\tilde{\mathit{\boldsymbol{\beta }}}}_{\mathit{\boldsymbol{c}}}(k,d)\right)</math> | ||
+ | | 1.0389 | ||
+ | | 1.0309 | ||
+ | | 1.0363 | ||
+ | | 1.0301 | ||
+ | |-style="text-align:center" | ||
+ | | <math>p=0.85</math> | ||
+ | | colspan='2' |<math>\left( {\sigma }^{2},{\sigma }_{1}^{2}\right) =(0.5,0.5)</math> | ||
+ | | colspan='2' |<math>\left( {\sigma }^{2},{\sigma }_{1}^{2}\right) =(1,1)</math> | ||
+ | |-style="text-align:center" | ||
+ | | ni | ||
+ | | 3 | ||
+ | | 7 | ||
+ | | 3 | ||
+ | | 7 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}})</math> | ||
+ | | 0.0002198 | ||
+ | | 0.0003460 | ||
+ | | 0.0004396 | ||
+ | | 0.0002387 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,\left( {\tilde{{\mathit{\boldsymbol{\beta }}}_{\mathit{\boldsymbol{r}}}}}_{\, }\right)</math> | ||
+ | | 0.0002076 | ||
+ | | 0.0001134 | ||
+ | | 0.0004153 | ||
+ | | 0.0002269 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))</math> | ||
+ | | 0.0001332 | ||
+ | | 0.0001045 | ||
+ | | 0.0002562 | ||
+ | | 0.0002111 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)\right)</math> | ||
+ | | 0.0001277 | ||
+ | | 0.0002460 | ||
+ | | 0.0002459 | ||
+ | | 0.0002014 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}:\tilde{\mathit{\boldsymbol{\beta }}}(k,d))</math> | ||
+ | | 1.6495 | ||
+ | | 1.1414 | ||
+ | | 1.7156 | ||
+ | | 1.1308 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}:{\tilde{\mathit{\boldsymbol{\beta }}}}_{c}(k,d)\right)</math> | ||
+ | | 1.6263 | ||
+ | | 1.1373 | ||
+ | | 1.6889 | ||
+ | | 1.1266 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,\left( \tilde{\mathit{\boldsymbol{\beta }}}(k,d):{\tilde{\mathit{\boldsymbol{\beta }}}}_{\mathit{\boldsymbol{c}}}(k,d)\right)</math> | ||
+ | | 1.0430 | ||
+ | | 1.1219 | ||
+ | | 1.0418 | ||
+ | | 1.0481 | ||
+ | |-style="text-align:center" | ||
+ | | <math>p=0.95</math> | ||
+ | | colspan='2' |<math>\left( {\sigma }^{2},{\sigma }_{1}^{2}\right) =(0.5,0.5)</math> | ||
+ | | colspan='2' |<math>\left( {\sigma }^{2},{\sigma }_{1}^{2}\right) =(1,1)</math> | ||
+ | |-style="text-align:center" | ||
+ | | ni | ||
+ | | 3 | ||
+ | | 7 | ||
+ | | 3 | ||
+ | | 7 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}})</math> | ||
+ | | 0.0005729 | ||
+ | | 0.0003460 | ||
+ | | 0.0011459 | ||
+ | | 0.0006920 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,\left( {\tilde{{\mathit{\boldsymbol{\beta }}}_{\mathit{\boldsymbol{r}}}}}_{\, }\right)</math> | ||
+ | | 0.0005033 | ||
+ | | 0.0003044 | ||
+ | | 0.0010066 | ||
+ | | 0.0006088 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}(k,d))</math> | ||
+ | | 0.0002762 | ||
+ | | 0.0002760 | ||
+ | | 0.0005201 | ||
+ | | 0.0005272 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{EMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)\right)</math> | ||
+ | | 0.0002578 | ||
+ | | 0.0002460 | ||
+ | | 0.0004927 | ||
+ | | 0.0004716 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,(\tilde{\mathit{\boldsymbol{\beta }}}:\tilde{\mathit{\boldsymbol{\beta }}}(k,d))</math> | ||
+ | | 2.0743 | ||
+ | | 1.2533 | ||
+ | | 2.2030 | ||
+ | | 1.3125 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,\left( {\tilde{\mathit{\boldsymbol{\beta }}}}_{r}:{\tilde{\mathit{\boldsymbol{\beta }}}}_{c}(k,d)\right)</math> | ||
+ | | 1.9524 | ||
+ | | 1.2369 | ||
+ | | 2.0429 | ||
+ | | 1.2908 | ||
+ | |-style="text-align:center" | ||
+ | | <math>\mathrm{RMSE}\,\left( \tilde{\mathit{\boldsymbol{\beta }}}(k,d):{\tilde{\mathit{\boldsymbol{\beta }}}}_{\mathit{\boldsymbol{c}}}(k,d)\right)</math> | ||
+ | | 1.0713 | ||
+ | | 1.1219 | ||
+ | | 1.0556 | ||
+ | | 1.1178 | ||
|} | |} | ||
− | |||
==7. Real data analysis== | ==7. Real data analysis== | ||
− | + | We consider a data set, which is known as the Egyptian pottery data to show the behavior of the new Restricted and Unrestricted Two-Parameter Estimators. This data set arises from an extensive archaeological survey of pottery production and distribution in the ancient Egyptian city of Al-Amarna. The data consist of measurements of chemical contents (mineral elements) made on many samples of pottery using two different techniques, NAA and ICP (see Smith et al. [30] for description of techniques). The set of pottery was collected from different locations around the city. We fit the data set by linear mixed model as <math display="inline">\mathit{\boldsymbol{y}}=</math><math>\mathit{\boldsymbol{X\beta }}+\mathit{\boldsymbol{Zu}}+\mathit{\boldsymbol{\epsilon }},</math> where <math display="inline">\mathit{\boldsymbol{y}}</math> is <math display="inline">159\times 1</math> vector of response variables, <math display="inline">\mathit{\boldsymbol{X}}</math> and <math display="inline">\mathit{\boldsymbol{Z}}</math> which are regression matrix with dimensions <math display="inline">159\times 6</math> and <math display="inline">159\times 25</math> respectively. First, we are estimated the variance components by consider <math display="inline">{\sigma }_{1}^{2}=</math><math>0.5</math> and <math display="inline">{\sigma }^{2}=0.5.</math> Then, by calculating the eigenvalues of <math display="inline">\mathit{\boldsymbol{X}}{\mathit{\boldsymbol{H}}}^{-1}\mathit{\boldsymbol{X}},</math> the condition number 8322860 is obtained, which indicate severe multicollinearity. We considered the stochastic linear restrictions as <math display="inline">\mathit{\boldsymbol{r}}=</math><math>\mathit{\boldsymbol{R\beta }}+\Phi ,\Phi \sim N\left( 0,{\sigma }^{2}{\mathit{\boldsymbol{I}}}_{3}\right)</math> and selected 3 available data in the previous sections to the Egyptian pottery data. <math display="inline">{\tilde{k}}_{HM}</math> and <math display="inline">{\tilde{d}}_{opt}</math> are obtained using the iterative method introduced at the end of section 5,0.348 and 0.373 respectively. In [[#tab-2|Table 2]], the estimated <math display="inline">MSE</math> values of the estimators are obtained by replacing in the corresponding theoretical MSE equations. We can see the estimated MSE values of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> is less than <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math>. Also, the estimated MSE values of <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{c}(k,d)</math> is less than <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}</math>. In general, the estimated MSE values of <math display="inline">{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> is less than all estimators. So, we conclude that the stochastic restricted two parameter estimator performs better than the other estimators. Note that in the results obtained for this data, all eigenvalues of <math display="inline">{\Delta }_{1}</math> and <math display="inline">{\Delta }_{2}</math> are positive and the condition of Theorem 4.1 and Theorem 4.2 are true. In [[#img-1|Figure 1]], a plot of the estimated MSE values of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> and <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> against <math display="inline">k</math> in the interval [0,2] with fixed <math display="inline">{\tilde{d}}_{opt~}=</math><math>0.373</math> is drawn. Because <math display="inline">\tilde{\beta }</math> is not dependent on <math display="inline">k</math>, its estimated <math display="inline">MSE</math> value is the same for all <math display="inline">k</math> values. It is obvious that estimated <math display="inline">MSE</math> values of <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> is always less than <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math>. Altogether, it is obvious that the two parameter estimators can perform better than the <math display="inline">\tilde{\mathit{\boldsymbol{\beta }}}</math> in MSEM criterion under conditions. | |
− | <div class="center" style=" | + | <div class="center" style="font-size: 75%;">'''Table 2'''. Estimated MSE values of the proposed estimators</div> |
− | Table 2. Estimated MSE values of the proposed estimators | + | |
− | {| style=" | + | <div id='tab-2'></div> |
− | + | {| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" | |
− | + | |-style="text-align:center" | |
− | | | + | ! !! <math>\tilde{\mathit{\boldsymbol{\beta }}}{\, }{\, }{\, }</math> !! <math>{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}</math> !! <math>\tilde{\mathit{\boldsymbol{\beta }}}(k,d)</math> !! <math>{\tilde{\mathit{\boldsymbol{\beta }}}}_{r}(k,d)</math> |
− | + | |-style="text-align:center" | |
− | + | | EMSE | |
− | + | | 1.216069 | |
− | + | | 1.201379 | |
− | + | | 0.1544953 | |
− | + | | 0.1541745 | |
− | + | |} | |
− | + | ||
− | + | ||
+ | <div id='img-1'></div> | ||
+ | {| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;" | ||
|- | |- | ||
− | | | + | |style="padding:10px;"| [[Image:Review_312425094190-image1.png|276px]] |
− | | | + | |- style="text-align: center; font-size: 75%;" |
− | + | | colspan="1" style="padding:10px;"| '''Figure 1'''. The estimated mean square error values of the estimators versus <math display="inline">k</math> with <math display="inline">{\tilde{d}}_{of~}</math> | |
− | + | ||
− | + | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==8. Conclusion== | ==8. Conclusion== | ||
Line 840: | Line 862: | ||
==Funding== | ==Funding== | ||
− | + | The research was supported by the Slamic Azad University. | |
− | The research was supported by the | + | |
==References== | ==References== | ||
− | :1 | + | <div class="auto" style="text-align: left;width: auto; margin-left: auto; margin-right: auto;font-size: 85%;"> |
+ | |||
+ | [1] Zenzile T.G. Community health workers' understanding of their role in rendering maternal, child and | ||
+ | women's health services. Diss. North-West University, 2018. | ||
+ | |||
+ | [2] Fiona S., Dierenfeld E.S., Langley-Evans S.C., Hamilton E., Lark R.M., Yon L., Watts M.J. Potential bio-indicators for assessment of mineral status in elephants. Sci. Rep-UK., 10(1):1-14, 2020. | ||
− | + | [3] Rajat K., Guler I., Nerkar A. Entangled decisions: Knowledge interdependencies and terminations of patented inventions in the pharmaceutical industry. Strateg. Manage. J., 39(9):2439-2465, 2018. | |
− | + | [4] Adam, L., Corsi D.J., Venechuk G.E. Schools influence adolescent e-cigarette use, but when? Examining the interdependent association between school context and teen vaping over time. J. Youth. Adolescence, 48(10):1899-1911, 2019. | |
− | + | [5] Zhiyi C., Zhu S., Niu Q., Zuo T. Knowledge discovery and recommendation with linear mixed model. IEEE Access., 8:38304-38317, 2020. | |
− | + | [6] Henderson C.R. Estimation of genetic parameters. Ann. Math. Stat., 21:309–310, 1950. | |
− | + | [7] Henderson C.R., Searle S.R., VonKrosig C.N. Estimation of environmental and genetic trends from records subject to culling. Biometrics, 15:192–218, 1959. | |
− | + | [8] Farebrother R.W. Further results on the mean square error of ridge regression. J. Royal. Stat. Soc., Series B (Methodological), 38(3):248-250, 1976. | |
− | + | [9] Liu K. A new class of biased estimate in linear regression. Commun. Statist. Theor. Meth., 22(2):393–402, 1993. | |
− | + | [10] Liu X.Q., Hu P. General ridge predictors in a mixed linear model. J. Theor. Appl. Stat., 47:363–378, 2013. | |
− | + | [11] Yang H., Chang X. A new two-parameter estimator in linear regression. Commun. Statist. Theor. Meth., 39:923–934, 2010. | |
− | + | [12] Theil H., Goldberger A.S. On pure and mixed statistical estimation in economics. Int. Econ. Rev., 2:65–78, 1961. | |
− | + | [13] Theil H. On the use of incomplete prior information in regression analysis. J. Amer. Statist. Assoc., 58,401–414, 1963. | |
− | + | [14] Gilmour A.R., Cullis B.R., Welham S.J., Gogel B.J., Thompson R. An efficient computing strategy for predicting in mixed linear models. Comput. Statist. Data Anal., 44:571–586, 2004. | |
− | + | [15] Jiming J., Lahiri P. Mixed model prediction and small area estimation. Test., 15(1):1-96, 2006. | |
− | + | [16] Patel S.R., Patel N.P. Mixed effect exponential linear model. Commun. Statist. Theor. Meth., 21(9):2721-2740, 1992. | |
− | + | [17] Eliot M.N., Ferguson J., Reilly M.P., Foulkes A.S. Ridge regression for longitudinal biomarker data. Int. J. Biostat., 7:1–11, 2011. | |
− | + | [18] Özkale M.R., Can F. An evaluation of ridge estimator in linear mixed models: an example from kidney failure data. J. Appl. Statist., 44(12):2251–2269, 2017. | |
− | + | [19] Kuran O., Ózkale M.R. Gilmour’s approach to mixed and stochastic restricted ridge predictions in linear mixed models. Linear. Algebra. Appl., 508:22–47, 2016. | |
− | + | [20] Hartley H.O., Rao J.N. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika, 54:93–108, 1967. | |
− | + | [21] Lee Y., Nelder J.A. Generalized linear models for the analysis of quality-improvement experiments. Canad. J. Stat., 26(1):95–105, 1998. | |
− | + | [22] Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for non-orthogonal problems. Technometrics, 12:55–67, 1970. | |
− | + | [23] Hoerl A.E., Kennard R.W. Ridge regression: iterative estimation of the biasing parameter. Commun. Statist. Theor. Meth., 5:77–88, 1976. | |
− | + | [24] Wencheko E. Estimation of the signal-to-noise in the linear regression model. Statist. Pap., 41:327–343, 2000. | |
− | + | [25] Kibria B.M. Performance of some new ridge regression estimators. Commun. Statist. Simul. Computat., 32:419–435, 2003. | |
− | + | [26] Mallows C.L. Some comments on Cp. Technometrics, 15:661–675, 1973. | |
− | + | [27] McDonald G.C., Galarneau D.I. A monte carlo evaluation of some ridge-type estimators. J. Amer. Statist. Assoc., 70:407–416, 1975. | |
− | + | [28] Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21::215–223, 1979. | |
− | + | [29] Craven P., Wahba G. Smoothing noisy data with spline functions. Numer. Math., 31:377–403, 1978. | |
− | + | [30] Smith D.M., Hart F.A., Symond R.D., Walsh J.N. Analysis of Roman pottery from Colchester by inductively coupled plasma spectrometry. Sci. Archaeolog. Glasgow, 196:41-55, 1987. | |
− | + | </div> |
In this article, two parameter estimation using penalized likelihood method in the linear mixed model is proposed. In addition, by considering the stochastic linear restriction for the vector of fixed effects parameters we are introduced the stochastic restricted two parameter estimation. Methods are proposed for estimating variance parameters when unknown. Also, the superiority conditions of the two parameter estimator over the best linear unbiased estimator, and the stochastic restricted two parameter estimator over the stochastic restricted best linear unbiased estimator are obtained under the mean square error matrix sense. Methods are proposed for estimating of the biasing parameters. Finally, a simulation study and a numerical example are given to evaluate the proposed estimators.
Keywords: Linear mixed model, two parameter estimation, stochastic restricted two parameter estimation, matrix mean square error
Today many datasets lack the assumption of data independence, which is the main presupposition of many statistical models. For example data collected by cluster or hierarchical sampling, lengthwise studies and frequent measurements or in medical research that simultaneously provides data from one or more body members, the assumption of data independence is unacceptable because the data of a cluster, a group, or an individual are interdependent over time [1]. The default requirement for fitting linear models is the assumption of data independence that does not exist so the use of these models although it leads to unbiased estimates but the variance of estimating coefficients is strongly influenced by the default of data independence. In other words if the data are not independent then the standard error and therefore the confidence interval and the result test result will be for non-trust regression coefficients. Therefore in analyzing these data it is necessary to use methods that can consider this dependence. One of the most important ways to solve this problem is linear mixed models which are generalizations of simple linear models that provide the possibility of random and fixed effects with each other. Linear mixed models are used in many fields of physical, biological, medical and social sciences [2-5].
We consider the linear mixed model (LMM) as follows:
|
(1) |
where is an vector of observations, with is an design matrix corresponding to the -th random effects factor and , is an observed design matrix for the fixed effects, is a parameter vector of unknown fixed effects, is a unobservable vector of random effects and is an unobservable vector of random errors. and are independent and have a multivariate normal distribution as
where and are and vectors of variance parameters corresponding to and , respectively. Henderson et al. [6-7] introduced the set of equations called mixed model equations, and obtained and as
where and . They and are called the best linear unbiased estimator (BLUE) and the best linear unbiased predictor (BLUP), respectively. One of the most common estimators in linear regression is the ordinary least squares (OLS) estimator, which in the case of multicollinearity may lead to estimates with adverse effects such as high variance [8]. To reduce the effects of multicollinearity. Liu et al. [9-10] proposed the ridge estimator and the Liu estimator respectively, which are the well-known alternatives of the OLS estimator. Yang and Chang [11] obtained the two parameter estimator “Using the mixed estimation technique introduced by Theil et al. [12-13]. They considered the prior information about in the form of restriction as where and are respectively the ridge, Liu parameters and the ridge estimator”.
In , authors such as Gilmour et al. [14], Jiming and Lahiri [15] and Patel and Patel [16], considered a state where the matrix is singular. Liu and Hu [10] and Eliot et al. [17] inquired the ridge prediction in LMM. Liu and Hu [10] are obtained and as
where and are the ridge estimator of and the ridge predictor of respectively. Özkale and Can [18] gave “an example from kidney failure data” to evaluate ridge estimator in linear mixed model. Kuran and Özkale [19] obtained the mixed and stochastic restricted ridge predictors by using Gilmour approach. They introduced “stochastic linear restriction as where is an vector, is an known matrix of rank and is an random vector that is assumed to be distributed with and where is vector of variance parameters corresponding to Also and are independent”
Then derived the stochastic restricted estimator of and the stochastic restricted predictor of respectively, as
Furthermore, they obtained the stochastic restricted ridge estimator of and the stochastic restricted ridge predictor of respectively, as
In this article, we obtain the new two parameter estimations in linear mixed models by taking Yang and Chang’s ideas [11] and considering restriction In Section we follow the idea of Henderson’s mixed model equations to get the two parameter estimator. Then, by setting stochastic linear restrictions on the vector of fixed effects parameters, we derive the stochastic restricted two parameter estimation. In Section 3, estimates for the variance parameters are obtained when unknown. In Section 4, under the mean square error matrix (MSEM) sense we offer comparisons of new two parameter estimators. In Section 5, Methods are proposed for estimating of the biasing parameters. In Sections 6 and 7, a simulation study and a real data analysis is given. Finally, summary and some conclusions are given in Section 8.
Under model (1), we have
and the joint distribution of and is given by
where and are nonsingular. If the restriction used by Yang and Ghang [11] in linear regression is transferred to linear mixed model, we can produce the two parameter estimator using “penalized term” idea. So by unifying restriction with model (1) to give
|
(2) |
where
|
with
|
Then and are jointly distributed as
|
where .The conditional distribution of given is and the logarithm joint density of and given by
The penalized log-likelihood function is obtained by succession and as follows:
|
(3) |
From Eq. (3), we get the partial derivative with respect to and then set the equations to zero and by using and to denote the solutions give
|
(4) |
|
(5) |
By solving the Eq. (5), is
|
(6) |
Using into Eq. (4) we get
|
(7) |
Also using this equation equals to
|
(8) |
In Eq. (8), if we put is obtained as follows
|
(9) |
Due to we get
|
(10) |
Using Eq. (10), equals to .
In section, we obtain the stochastic restricted two parameter estimation. For this, the stochastic Linear restrictions can be unified to model (1) and the restriction to give
|
(11) |
where
|
Then, the conditional distribution of given is and the logarithm joint density of and given by
Substituting and to , the penalized log-likelihood function is obtained as follows:
|
(12) |
From Eq. (12), we get the partial derivative with respect to and then set the equations to zero and by using and to denote the solutions give
|
(13) |
|
(14) |
By solving these equations similar to Eqs. (4) and (5), the following results are obtained
|
(15) |
|
(16) |
In linear mixed models, the variance parameter within and are often unknown that several methods have been proposed by [16,20-22] to estimate them. In this section, we estimate the variance parameters using the ML method. The marginal distribution of is , therefore we can write the marginal log-likelihood function of
|
(17) |
where and and are vectors of unknown parameters, respectively. Differentiating the Eq. (17) with respect to and the partial derivatives is obtained as
|
(18) |
|
(19) |
|
(20) |
where . Setting Eqs. (18)-(20) equal to zero and using and and instead of and gives
|
(21) |
|
(22) |
|
(23) |
Solving Eqs. (21) and (23) yields the estimators
|
(24) |
|
(25) |
Eq. (23) depends on and so iterative procedures must be used to solve 's. In the statistical literature, there are four iterative procedures to estimates variance parameters, which include: "Newton-Raphson (NR), Expectation Maximization algorithm (EM), Fisher Scoring (FS) and the Average Information (AI) algorithms". See [22] for details of these procedures. Note that in the stochastic restricted two parameter methods, the ML estimators is obtained similar Eqs. (21),(22) and (23).
In this section, we compare the estimator with and the estimator with using the mean squares error matrix (MSEM) sense. The estimator is superior to with respect to the MSEM sense, if and only if that is, is a positive definite (pd) matrix. The mean-square error matrix for the estimator is given as
|
The variance matrix of is
where The bias is given as
bias |
The mean-square error matrix for the estimator is given as
where
and
The of is where and the of is
The estimator is superior to the estimator under the MSEM sense, if and only if then
According to Farebrother if then the necessary and sufficient condition for to be superior to is .
In the linear regression model, choosing the parameter is important so many statisticians were suggested several methods for obtaining this parameter. These methods were proposed by many researchers [23-29] and others. According to Ozkale and Can [18], we rewrite model (1) in the form of a marginal model in which random effects are not explicitly defined:
|
(26) |
Because is pd, then there is a nonsingular symmetric matrix such that . If we multiply both sides of model (42) by , we get , where ,
and . The matrix is symmetric, so there is an orthogonal matrix such that and where
are the ordered eigenvalues of . Then model (26) can be rewritten in a canonical form as , where and . Under this model, we get the following representation:
We use to find the optimal values of and , where is the mean square error. Let fixed, the optimal value of the can be obtained by minimizing the following statement
Notice that Therefore, getting we obtain Since the optimal depends on unknown and then according Hoerl and Kennard [9] we can get the estimate of by substituting and as follows:
|
(27) |
where and are the unbiased estimators and . According to the estimator of which Kibria [25] and Hoerl and Kennard [9] proposed, the harmonic mean value of in (27) is
Now, let fixed, and we get the optimal value by minimizing . Therefore getting
|
(28) |
Since is always be positive, in this section we get the positive condition of the estimator in Eq. (27). For this purpose, we use the following theorem.
Theorem 5.1
If , for all then are always positive.
Proof.
If , then the values of are positive. Since and must be positive for all . Then we get and because depends on the unknown parameters and so their unbiased estimators are replaced. Therefore is always positive if is selected as .
Note that is always less than one and since must be between zero and one, we consider the inequality as follows
|
(29) |
Since in (28) depends on and the estimators of in depend on , we consider an iterative method for these parameters by applying the following method. Step calculate from Eq. (29). Step 2, calculate by using in step 1 . Step calculate from Eq. (28) by using the estimator in Step 2 . Step if is not between zero and one use
In this section, we compare the performance of and with a simulation study. For this purpose, we calculate the estimated mean square error (EMSE) with various values of sample size, variance and degree of collinearity. Following McDonald and Galarneau [27], we are computed the fixed effects as
|
(30) |
where independent standard normal are pseudo-random numbers and is the correlation between any two fixed effects. Three different sets of were considered as 0.75,0.85 and The matrix is produced in a completely randomized design. Observation on responses are then determined by
|
(31) |
We consider two designs that in the first design and in the second design . Also, the same value and are taken in both designs. Following Ozcale and Can [18], the vector was chosen as the eigenvector corresponding to the largest eigenvalue of the matrix”. The variances matrix of random effects and are and , respectively. They are generated from the normal distribution . We are considered and .The trial was replicated 1000 times by generating and For each simulated data set derived and and then the estimated mean squared error (EMSE) calculated as calculated the relative mean square (RMSE) as
when is greater than one, it indicates that the estimator superior to the estimator . For the stochastic linear restriction the matrix is and generated from the normal distribution and the matrix is generated from the normal distribution where is taken as ) with . In Table 1, we obtain the values of EMSE and RMSE for and . We have the following results for Table 1:
(i) In the whole table, the EMSE values of is less than . Also, the EMSE values of is less than . In general, the EMSE values of is less than all estimators.
(ii) As and increase, the EMSE values of the estimators increase.
(iii) As increases, difference between the EMSE values of the two parameter estimators and the EMSE values of the best linear unbiased estimators increase. This implies an increase in the improvement of the two-parameter estimators.
ni | 3 | 7 | 3 | 7 |
0.0001526 | 7.3974e-05 | 0.0003053 | 0.0001479 | |
0.0001461 | 7.1668e-05 | 0.0002923 | 0.0001433 | |
0.0001032 | 6.9166e-05 | 0.0001912 | 0.0001332 | |
9.9335e-05 | 6.7089e-05 | 0.0001845 | 0.0001293 | |
1.4795 | 1.0695 | 1.5965 | 1.1104 | |
1.4716 | 1.0682 | 1.5845 | 1.1083 | |
1.0389 | 1.0309 | 1.0363 | 1.0301 | |
ni | 3 | 7 | 3 | 7 |
0.0002198 | 0.0003460 | 0.0004396 | 0.0002387 | |
0.0002076 | 0.0001134 | 0.0004153 | 0.0002269 | |
0.0001332 | 0.0001045 | 0.0002562 | 0.0002111 | |
0.0001277 | 0.0002460 | 0.0002459 | 0.0002014 | |
1.6495 | 1.1414 | 1.7156 | 1.1308 | |
1.6263 | 1.1373 | 1.6889 | 1.1266 | |
1.0430 | 1.1219 | 1.0418 | 1.0481 | |
ni | 3 | 7 | 3 | 7 |
0.0005729 | 0.0003460 | 0.0011459 | 0.0006920 | |
0.0005033 | 0.0003044 | 0.0010066 | 0.0006088 | |
0.0002762 | 0.0002760 | 0.0005201 | 0.0005272 | |
0.0002578 | 0.0002460 | 0.0004927 | 0.0004716 | |
2.0743 | 1.2533 | 2.2030 | 1.3125 | |
1.9524 | 1.2369 | 2.0429 | 1.2908 | |
1.0713 | 1.1219 | 1.0556 | 1.1178 |
We consider a data set, which is known as the Egyptian pottery data to show the behavior of the new Restricted and Unrestricted Two-Parameter Estimators. This data set arises from an extensive archaeological survey of pottery production and distribution in the ancient Egyptian city of Al-Amarna. The data consist of measurements of chemical contents (mineral elements) made on many samples of pottery using two different techniques, NAA and ICP (see Smith et al. [30] for description of techniques). The set of pottery was collected from different locations around the city. We fit the data set by linear mixed model as where is vector of response variables, and which are regression matrix with dimensions and respectively. First, we are estimated the variance components by consider and Then, by calculating the eigenvalues of the condition number 8322860 is obtained, which indicate severe multicollinearity. We considered the stochastic linear restrictions as and selected 3 available data in the previous sections to the Egyptian pottery data. and are obtained using the iterative method introduced at the end of section 5,0.348 and 0.373 respectively. In Table 2, the estimated values of the estimators are obtained by replacing in the corresponding theoretical MSE equations. We can see the estimated MSE values of is less than . Also, the estimated MSE values of is less than . In general, the estimated MSE values of is less than all estimators. So, we conclude that the stochastic restricted two parameter estimator performs better than the other estimators. Note that in the results obtained for this data, all eigenvalues of and are positive and the condition of Theorem 4.1 and Theorem 4.2 are true. In Figure 1, a plot of the estimated MSE values of and against in the interval [0,2] with fixed is drawn. Because is not dependent on , its estimated value is the same for all values. It is obvious that estimated values of is always less than . Altogether, it is obvious that the two parameter estimators can perform better than the in MSEM criterion under conditions.
EMSE | 1.216069 | 1.201379 | 0.1544953 | 0.1541745 |
Figure 1. The estimated mean square error values of the estimators versus with |
In this article, we proposed the two parameter estimator and the stochastic restricted two parameter estimator to overcome the effects of the multicollinearity problem in linear mixed models. We also obtained estimates of variance parameters and then using the mean squared error matrix sense made comparisons between the proposed estimators and some other estimators. Finally, we proposed methods for estimating biasing parameters and provided a simulation study and a data example to illustrate performance of new estimators.
No potential conflict of interest was reported by the authors..
The research was supported by the Slamic Azad University.
[1] Zenzile T.G. Community health workers' understanding of their role in rendering maternal, child and women's health services. Diss. North-West University, 2018.
[2] Fiona S., Dierenfeld E.S., Langley-Evans S.C., Hamilton E., Lark R.M., Yon L., Watts M.J. Potential bio-indicators for assessment of mineral status in elephants. Sci. Rep-UK., 10(1):1-14, 2020.
[3] Rajat K., Guler I., Nerkar A. Entangled decisions: Knowledge interdependencies and terminations of patented inventions in the pharmaceutical industry. Strateg. Manage. J., 39(9):2439-2465, 2018.
[4] Adam, L., Corsi D.J., Venechuk G.E. Schools influence adolescent e-cigarette use, but when? Examining the interdependent association between school context and teen vaping over time. J. Youth. Adolescence, 48(10):1899-1911, 2019.
[5] Zhiyi C., Zhu S., Niu Q., Zuo T. Knowledge discovery and recommendation with linear mixed model. IEEE Access., 8:38304-38317, 2020.
[6] Henderson C.R. Estimation of genetic parameters. Ann. Math. Stat., 21:309–310, 1950.
[7] Henderson C.R., Searle S.R., VonKrosig C.N. Estimation of environmental and genetic trends from records subject to culling. Biometrics, 15:192–218, 1959.
[8] Farebrother R.W. Further results on the mean square error of ridge regression. J. Royal. Stat. Soc., Series B (Methodological), 38(3):248-250, 1976.
[9] Liu K. A new class of biased estimate in linear regression. Commun. Statist. Theor. Meth., 22(2):393–402, 1993.
[10] Liu X.Q., Hu P. General ridge predictors in a mixed linear model. J. Theor. Appl. Stat., 47:363–378, 2013.
[11] Yang H., Chang X. A new two-parameter estimator in linear regression. Commun. Statist. Theor. Meth., 39:923–934, 2010.
[12] Theil H., Goldberger A.S. On pure and mixed statistical estimation in economics. Int. Econ. Rev., 2:65–78, 1961.
[13] Theil H. On the use of incomplete prior information in regression analysis. J. Amer. Statist. Assoc., 58,401–414, 1963.
[14] Gilmour A.R., Cullis B.R., Welham S.J., Gogel B.J., Thompson R. An efficient computing strategy for predicting in mixed linear models. Comput. Statist. Data Anal., 44:571–586, 2004.
[15] Jiming J., Lahiri P. Mixed model prediction and small area estimation. Test., 15(1):1-96, 2006.
[16] Patel S.R., Patel N.P. Mixed effect exponential linear model. Commun. Statist. Theor. Meth., 21(9):2721-2740, 1992.
[17] Eliot M.N., Ferguson J., Reilly M.P., Foulkes A.S. Ridge regression for longitudinal biomarker data. Int. J. Biostat., 7:1–11, 2011.
[18] Özkale M.R., Can F. An evaluation of ridge estimator in linear mixed models: an example from kidney failure data. J. Appl. Statist., 44(12):2251–2269, 2017.
[19] Kuran O., Ózkale M.R. Gilmour’s approach to mixed and stochastic restricted ridge predictions in linear mixed models. Linear. Algebra. Appl., 508:22–47, 2016.
[20] Hartley H.O., Rao J.N. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika, 54:93–108, 1967.
[21] Lee Y., Nelder J.A. Generalized linear models for the analysis of quality-improvement experiments. Canad. J. Stat., 26(1):95–105, 1998.
[22] Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for non-orthogonal problems. Technometrics, 12:55–67, 1970.
[23] Hoerl A.E., Kennard R.W. Ridge regression: iterative estimation of the biasing parameter. Commun. Statist. Theor. Meth., 5:77–88, 1976.
[24] Wencheko E. Estimation of the signal-to-noise in the linear regression model. Statist. Pap., 41:327–343, 2000.
[25] Kibria B.M. Performance of some new ridge regression estimators. Commun. Statist. Simul. Computat., 32:419–435, 2003.
[26] Mallows C.L. Some comments on Cp. Technometrics, 15:661–675, 1973.
[27] McDonald G.C., Galarneau D.I. A monte carlo evaluation of some ridge-type estimators. J. Amer. Statist. Assoc., 70:407–416, 1975.
[28] Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21::215–223, 1979.
[29] Craven P., Wahba G. Smoothing noisy data with spline functions. Numer. Math., 31:377–403, 1978.
[30] Smith D.M., Hart F.A., Symond R.D., Walsh J.N. Analysis of Roman pottery from Colchester by inductively coupled plasma spectrometry. Sci. Archaeolog. Glasgow, 196:41-55, 1987.
Published on 04/06/21
Accepted on 04/06/21
Submitted on 20/03/21
Volume 37, Issue 2, 2021
DOI: 10.23967/j.rimni.2021.06.001
Licence: CC BY-NC-SA license
Are you one of the authors of this document?