(Created page with "== Abstract == Many examples of archaeological shelters can be found over sites and a wide range of literature illustrates their features. However, it se...")
 
m (Scipediacontent moved page Draft Content 274191438 to Sbrogio et al 2021a)
 
(No difference)

Latest revision as of 14:20, 30 November 2021

Abstract

Many examples of archaeological shelters can be found over sites and a wide range of literature illustrates their features. However, it seems that only a few have passed through a proper assessment phase of their effectiveness and compatibility to the archaeological remains. which is mainly due to proper detailing of the building solution in respect of general conservation criteria. Furthermore, in some cases, shelters have proven to worsen environmental conditions that they are supposed to protect. In this paper design criteria for archaeological shelters are proposed, in respect of the three main themes recognized as crucial: general architectural quality, conservation effectiveness, structural and functional detailing. To deal with the wide range of cases where such criteria must be applied, an innovative tool providing the desired flexibility in the design procedure is taken into consideration. Algorithmic modelling in Grasshopper environment, a plugin for Rhinoceros 3D software, offers the required features thanks to a linear workflow, where the general characteristics of the structure as far as its structural details can be implemented. Every element is represented by a set of parameters in the plugin rather than a single object in the ‘parent’ modelling tool, thus allowing easy change to the design. Other plugins provide additional tools for specific tasks, such as finite element analysis, safety verifications and structural optimization. The paper presents the methodology for the implementation of the entire workflow and the preliminary assessment of its results, from the structural and architectural point of view, showing good adaptability to several possible design choices (position of pillars, truss number, roof pitch, etc.). Structural optimization is also executed. The future implementation of environmental parameters (e.g. daylight, ventilation, temperature), as an additional set of restraints, will complete the framework on which a final assessment will take place.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

References

[1] Aslan, Z., Court, S., Teutonico, J.M., Thompson, J. (Eds.) Protective shelters for archaeological sites. Los Angeles, (2018).

[2] Di Muzio, A. Rovine protette. Conservazione e presentazione delle testimonianze archeologiche. Firenze, (2013).

[3] Basso, A. Progettazione di sistemi a configurazione variabile per coperture di siti archeologici. Padova (2018).

[4] Ruggieri Tricoli, M. C. and Sposito C. I siti archeologici: dalla definizione del valore alla protezione della materia. Palermo, (2004).

[5] Avrami, E., Mason R. and De La Torre, M. (Eds.) Values and Heritage Conservation. Los Angeles, (2010).

[6] Agnew, N. and Brigland, J. (Eds). Of the Past, for the Future: Integrating Archaeology and Conservation. Los Angeles, (2006).

[7] Amendolea, B. (Ed.). I siti archeologici: un problema di musealizzazione all’aperto. Roma (1988).

[8] Camuffo, D. Microclimate for Cultural heritage. Conservation, Restoration and Manteinance of Indoor and Outdoor Monuments. San Diego, (2014). .

[9] Aslan, Z. Protective structures for the conservation and presentation of archaeological sites. Conservation and management of archaeological sites (2001) 5:73-85.

[10] Panosa, M.I. Musealizing Archaeological Sites. Considerations on Research, Conservation, and Dissemination: A Case Study from the Gavà Mines Archaeological Park. Conservation and Management of Archaeological Sites, 17:2, 159-174. (2015)

[11] Pedelì, C. and Pulga S. Pratiche conservative sullo scavo archeologico. Principi e metodi. Firenze, (2002).

[12] Laurenti, M.C., (Ed). La copertura di aree archeologiche. Museo Aperto. Roma, (2006).

[13] Michaelides, D. (Ed.) Mosaics make a site: the conservation in situ of mosaics in archaeological sites. Proceedings of the VI international conference of the International Committee for the Conservation of Mosaics (1996). ICCROM, (2003).

[14] Roby, T. and Demas, M. (Eds.) Mosaics in situ. An overview of literature on conservation of mosaics in situ. Los Angeles, (2012).

[15] Palumbo, G. and Teutonico, J. M. (Eds.). Management planning for archaeological sites. Los Angelese, (2000).

[16] De La Torre, M., (Ed.). Conservation of Archaeological Sites in the Mediterranean Region. Los Angeles, (1997).

[17] Brandi, C. Teoria del Restauro. Torino, (1977).

[18] Henry Cleere (2010) Management Plans for Archaeological Sites: A World Heritage Template, Conservation and Management of Archaeological Sites, 12:1, 4-12, (2010).

[19] Ruggieri Tricoli, M. C. Musei sulle rovine. Architetture nel contesto archeologico. Milano, (2007).

[20] Vaudetti, M., Minucciani V. and Canepa, S. (Eds.). Mostrare l’archeologia. Per un manuale-atlante degli interventi di valorizzazione. Torino, (2013).

[21] D’Agostino, S. and A. Melucco Vaccaro A. Il rudere archeologico: un contributo alla conoscenza della sua vulnerabilità. In Biscontin G. e G. Driussi G. (Eds.) Dal sito archeologico all’archeologia del costruito. Conoscenza Progetto e Conservazione. Padova, (1996).

[22] Carandini, A. Storie dalla terra. Manuale di scavo archeologico. Torino, (2010).

[23] Minissi, F. Ipotesi di impiego di coperture metalliche a protezione di zone archeologiche. Restauro 81, (1985).

[24] Sposito, C. Esigenze e requisiti delle coperture. In Sposito A. (Ed.) Coprire l’antico. Palermo, (2004).

[25] Huisman, D. J. (Ed.) Degradation of archaeological remains. Den Haag, (2009).

[26] Bikai, P. M. e Bikai P. Caring for the Cultural Heritage: Shelter. In: ACOR (American Center for Oriental Research) Newsletter 9.1, (1997).

[27] Russo, S. Strutture in composito. Sperimentazione teoria e applicazioni. Milano, (2011).

[28] Bank, L.C. Composite for construction: structural design with FRP materials. Wiley & Sons, (2006).

[29] Izzo, M. Exploring the possible role of parametric design in locationing the compositional problem: theory and practice of an evolving approach toward the urban design perspective. Milano, (2017).

[30] Tedeschi, A. AAD Algorithms-aided design: Parametric strategies using Grasshopper, (2014).

[31] Gerbo, E.J. and Salikis, E.P. Optimizing a trussed frame subject to wind using Rhino, Grasshopper, Karamba and Galapagos. In: R.M. Brasil and Pauletti, R.M.O. (Eds.): Shells Membranes and spatial structures: Footprints (2014).

[32] Vierlinger, R. Multi objective design interface. Master thesis, Wien (2018).

[33] Bangash, M.Y.H. and Bangash, T. Elements of spatial structures – Analysis and design. Telford, (2003).

[34] https://www.karamba3d.com/, last visited on February 15, 2020

[35] Clarke, J.L. (Ed.) Structural design of polymer composites. EUROCOMP design and handbook. EFN SPON, (1996).

Back to Top
GET PDF

Document information

Published on 30/11/21
Submitted on 30/11/21

Volume Management of heritage structures and conservation strategies, 2021
DOI: 10.23967/sahc.2021.073
Licence: CC BY-NC-SA license

Document Score

0

Views 19
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?