(Created page with "== Abstract == Substantial part of heritage structures in Turkey is historic masonry arch bridges. To explore modeling issues, a numerical work has been initiated t...")
 
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
== Full document ==
 
== Full document ==
<pdf>Media:Draft_Content_172302545p758.pdf</pdf>
+
<pdf>Media:G._Mentese_2021a_3272_p758.pdf</pdf>
 +
 
 +
== References ==
 +
[1]  Lourenço,  P.B.  Analysis  of  Historical  Constructions  from  Thrust-lines  to  Advanced Simulations, In P.B.  Lourenço  and  P.  Roca (Eds.): Historical Constructions: Possibilities  of  Numerical  and  Experimental  Techniques,  Proceedings  of  the  Third International Seminar (2001).
 +
 
 +
[2]  Lourenço,  P.B. Computational Strategies for Masonry Structures. Ph.D Thesis, University of Minho, Braga, Portugal: PhD dissertation (1996).
 +
 
 +
[3]  Lourenço, P.B., Milani, G., Tralli, A., and Zucchini, A. Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering (2007) 34:1443-1457.
 +
 
 +
[4]  Cavicchi,  A.,  and  Gambarotta,  L.  Two-dimensional  finite  element  upper  bound  limit analysis of masonry bridges. Computers and Structures (2006), 84: 2316-2328. 
 +
 
 +
[5]  Fanning,  P.J.,  Boothby,  T.E.  Three-dimensional  modeling  and  full-scale  testing  of stone arch bridges. Computers and Structures (2001) 79: 2645-2662.
 +
 
 +
[6]  Frunzio,  G.,  Monaco,  M.  and  Gesualdo,  A.  3D  F.E.M  Analysis  of  a  Roman  Arch Bridge. In P.B. Lourenço and P. Roca (Eds.): Historical Constructions: Possibilities of  Numerical  and  Experimental  Techniques,  Proceedings  of  the  Third  International Seminar (2001), pp.591-598.
 +
 
 +
[7]  Conde,  B.,  Ramos,  L.  F.,  Oliveira,  D.  V.,  Riveiro,  B.,  and  Solla,  M.  Structural assessment of masonry arch bridges by combination of non-destructive testing tecniques and three-dimensional numerical modeling: Application to Vilanova bridge. Engineering Structures (2017) 148: 621-638. 
 +
 
 +
[8]  Milani,  G.,  and  Lourenço,  P.B.  3D  non-linear  behavior  of  masonry  arch  bridges. Computer and Structures (2012) 110-111: 133-150.
 +
 
 +
[9]  Costa,  C.,  Arede,  A.,  Morais,  M.,  and  Anibal,  A.  Detailed  FE  and  DE  modeling  of stone  masonry  arch  bridges  for  the  assessment  of  load-carrying  capacity. Procedia Engineering (2015) 114: 854-861. 
 +
 
 +
[10] Diaz,  J.,  Romera,  L.,  and  Hernandez,  S.  Non-linear  Finite  Element  Analysis  and Limit  Analysis  Comparison  of  the  Caaveiro  Stone  Arch  Bridge.  In  C.A.  Brebbia (Ed.): Studies, Repairs and Maintenance of Heritage Architecture, WIT Press (2007), pp.556-575.
 +
 
 +
[11] Whitby,  M.  Justinian’s  Bridge  over  the  Sangarius  and  the  date  of  Procopius’de Aedificiis. The Journal of Hellenic Studies (1985) 105: 129-148. 
 +
 
 +
[12] <http://kantaratlas.blogspot.com.tr/ >, date retrieved 27.05.2018.
 +
 
 +
[13] <https://en.wikipedia.org/wiki/Sangarius_Bridge>, date retrieved 29.06.2016.
 +
 
 +
[14] <http://www.sakaryakulturturizm.gov.tr>, date retrieved 29.06.2016.
 +
 
 +
[15] Ozcan, Z. Tarihi Sangarius Köprüsü’nde hasar belirlenmesi ve güçlendirme önerileri. 3. Köprüler ve Viyadükler Sempozyumu, Istanbul, Turkey, 8-10 Mayıs, 2015.
 +
 
 +
[16] Mentese, V.G. 3D Nonlinear Modeling and Testing of Historic Stone Masonry Arch Bridges:  The  Case  of  Justinian’s  Bridge.  Istanbul  Technical  University,  Istanbul, Turkey: M.Sc. Thesis (2018). 
 +
 
 +
[17] <whc.unesco.org/en/tentativelists/6347/>, date retrieved 02.05.2018.
 +
 
 +
[18] Angelillo, M., Lourenço, P.B., Milani,  G. Masonry  Behaviour and Modelling.  In M. Angelillo (Ed.): Mechanics of Masonry Structures, Springer (2014), pp.13-27. 
 +
 
 +
[19] TNO DIANA 9.6. Diana Finite Element Analysis. Delft, The Netherlands: 2014.
 +
 
 +
[20] Mentese, V.G., Gedik, Y.H., Gunes, O.,  and Korkmaz, K.A. Structural  Investigation on  Justinianus  Bridge  in  Sakarya  city  of  Turkey.  1st  Istanbul  Bridge  Conference, Istanbul, Turkey, August 8-9, 2016.
 +
 
 +
[21] Page,  J.  Load  tests  to  collapse  on  two  arch  bridges  at  Preston,  Shropshire  and Prestwood,  Staffordshire  (Report  No.  110).  UK:  The  Report  of  Transport  and  Road Research Laboratory (TRRL), Department of Transport (1987).
 +
 
 +
[22] LimitState: RING 3.1. Masonry Arch Analysis Software. Sheffield, the UK: 2014.
 +
 
 +
[23] Pulatsu, B., Erdogmus,  E., and  Bretas, E. Parametric study  on masonry  arches using 2D discrete element modeling. Journal of Architectural Engineering (2018). 24(2).
 +
 
 +
[24] Page,  J.  Load  Tests  to  Collapse  on  Masonry  Arch  Bridges.  In  T.  Telford  and  C. Melbourne (Eds.): Arch Bridges, Thomas Telford, UK: London (1995), pp.289-298. 
 +
 
 +
[25] Brencich,  A.,  and  De  Francesco,  U.  Assessment  of  multispan  masonry  arch  bridges. II: Examples and applications. Journal of Bridge Engineering (2004) 9(6): 591-598.

Latest revision as of 13:45, 30 November 2021

Abstract

Substantial part of heritage structures in Turkey is historic masonry arch bridges. To explore modeling issues, a numerical work has been initiated to better understand and preserve/transfer this heritage to the next eras. This paper specifically describes the influence of tensile fracture energy of stone material in determining their true load carrying capacities. A case study is presented to explain the modeling issues. With its historical background, current situation, geometric and material properties, this work focuses on numerical investigation of the historic multi-span stone masonry arch Justinian’s (or Sangarius) Bridge located in the city of Sakarya in Turkey over the Sakarya River. Numerical results show that the value of fracture energy in tension significantly affect the load carrying capacity and failure mechanism of multi-span masonry arch bridges. A more realistic nonlinear response has been obtained for an upper value of the tensile fracture energy of the stone masonry. The bridge model collapses by a-three-hinge mechanism occuring at the loaded arch in the upper value of the tensile fracture energy. The most critical loading point of the bridge is determined as the quarter-span.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

References

[1] Lourenço, P.B. Analysis of Historical Constructions from Thrust-lines to Advanced Simulations, In P.B. Lourenço and P. Roca (Eds.): Historical Constructions: Possibilities of Numerical and Experimental Techniques, Proceedings of the Third International Seminar (2001).

[2] Lourenço, P.B. Computational Strategies for Masonry Structures. Ph.D Thesis, University of Minho, Braga, Portugal: PhD dissertation (1996).

[3] Lourenço, P.B., Milani, G., Tralli, A., and Zucchini, A. Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering (2007) 34:1443-1457.

[4] Cavicchi, A., and Gambarotta, L. Two-dimensional finite element upper bound limit analysis of masonry bridges. Computers and Structures (2006), 84: 2316-2328.

[5] Fanning, P.J., Boothby, T.E. Three-dimensional modeling and full-scale testing of stone arch bridges. Computers and Structures (2001) 79: 2645-2662.

[6] Frunzio, G., Monaco, M. and Gesualdo, A. 3D F.E.M Analysis of a Roman Arch Bridge. In P.B. Lourenço and P. Roca (Eds.): Historical Constructions: Possibilities of Numerical and Experimental Techniques, Proceedings of the Third International Seminar (2001), pp.591-598.

[7] Conde, B., Ramos, L. F., Oliveira, D. V., Riveiro, B., and Solla, M. Structural assessment of masonry arch bridges by combination of non-destructive testing tecniques and three-dimensional numerical modeling: Application to Vilanova bridge. Engineering Structures (2017) 148: 621-638.

[8] Milani, G., and Lourenço, P.B. 3D non-linear behavior of masonry arch bridges. Computer and Structures (2012) 110-111: 133-150.

[9] Costa, C., Arede, A., Morais, M., and Anibal, A. Detailed FE and DE modeling of stone masonry arch bridges for the assessment of load-carrying capacity. Procedia Engineering (2015) 114: 854-861.

[10] Diaz, J., Romera, L., and Hernandez, S. Non-linear Finite Element Analysis and Limit Analysis Comparison of the Caaveiro Stone Arch Bridge. In C.A. Brebbia (Ed.): Studies, Repairs and Maintenance of Heritage Architecture, WIT Press (2007), pp.556-575.

[11] Whitby, M. Justinian’s Bridge over the Sangarius and the date of Procopius’de Aedificiis. The Journal of Hellenic Studies (1985) 105: 129-148.

[12] <http://kantaratlas.blogspot.com.tr/ >, date retrieved 27.05.2018.

[13] <https://en.wikipedia.org/wiki/Sangarius_Bridge>, date retrieved 29.06.2016.

[14] <http://www.sakaryakulturturizm.gov.tr>, date retrieved 29.06.2016.

[15] Ozcan, Z. Tarihi Sangarius Köprüsü’nde hasar belirlenmesi ve güçlendirme önerileri. 3. Köprüler ve Viyadükler Sempozyumu, Istanbul, Turkey, 8-10 Mayıs, 2015.

[16] Mentese, V.G. 3D Nonlinear Modeling and Testing of Historic Stone Masonry Arch Bridges: The Case of Justinian’s Bridge. Istanbul Technical University, Istanbul, Turkey: M.Sc. Thesis (2018).

[17] <whc.unesco.org/en/tentativelists/6347/>, date retrieved 02.05.2018.

[18] Angelillo, M., Lourenço, P.B., Milani, G. Masonry Behaviour and Modelling. In M. Angelillo (Ed.): Mechanics of Masonry Structures, Springer (2014), pp.13-27.

[19] TNO DIANA 9.6. Diana Finite Element Analysis. Delft, The Netherlands: 2014.

[20] Mentese, V.G., Gedik, Y.H., Gunes, O., and Korkmaz, K.A. Structural Investigation on Justinianus Bridge in Sakarya city of Turkey. 1st Istanbul Bridge Conference, Istanbul, Turkey, August 8-9, 2016.

[21] Page, J. Load tests to collapse on two arch bridges at Preston, Shropshire and Prestwood, Staffordshire (Report No. 110). UK: The Report of Transport and Road Research Laboratory (TRRL), Department of Transport (1987).

[22] LimitState: RING 3.1. Masonry Arch Analysis Software. Sheffield, the UK: 2014.

[23] Pulatsu, B., Erdogmus, E., and Bretas, E. Parametric study on masonry arches using 2D discrete element modeling. Journal of Architectural Engineering (2018). 24(2).

[24] Page, J. Load Tests to Collapse on Masonry Arch Bridges. In T. Telford and C. Melbourne (Eds.): Arch Bridges, Thomas Telford, UK: London (1995), pp.289-298.

[25] Brencich, A., and De Francesco, U. Assessment of multispan masonry arch bridges. II: Examples and applications. Journal of Bridge Engineering (2004) 9(6): 591-598.

Back to Top
GET PDF

Document information

Published on 29/11/21
Submitted on 29/11/21

Volume Numerical modeling and structural analysis, 2021
DOI: 10.23967/sahc.2021.002
Licence: CC BY-NC-SA license

Document Score

5

Views 0
Recommendations 1

Share this document

claim authorship

Are you one of the authors of this document?