(Created page with " == Abstract == he main aim of structural safety control is the multiple assessments of the expected dam behaviour based on models and the measurements and parameters that ch...") |
m (Fsalazar moved page Draft Salazar 835902124 to Mata Salazar 2021a) |
(No difference)
|
he main aim of structural safety control is the multiple assessments of the expected dam behaviour based on models and the measurements and parameters that characterise the dam’s response and condition. In recent years, there is an increase in the use of data-based models for the analysis and interpretation of the structural behaviour of dams. Multiple Linear Regression is the conventional, widely used approach in dam engineering, although interesting results have been published based on machine learning algorithms such as artificial neural networks, support vector machines, random forest, and boosted regression trees. However, these models need to be carefully developed and properly assessed before their application in practice. This is even more relevant when an increase in users of machine learning models is expected. For this reason, this paper presents extensive work regarding the verification and validation of data-based models for the analysis and interpretation of observed dam’s behaviour. This is presented by means of the development of several machine learning models to interpret horizontal displacements in an arch dam in operation. Several validation techniques are applied, including historical data validation, sensitivity analysis, and predictive validation. The results are discussed and conclusions are drawn regarding the practical application of data-based models.
Published on 01/01/2021
DOI: https://doi.org/ 10.3390/w13192717
Licence: CC BY-NC-SA license
Are you one of the authors of this document?