(Created page with " == Abstract == Most early research on route choice behavior analysis relied on the data collected from the stated preference survey or through small-scale experiments. This...")
 
m (Scipediacontent moved page Draft Content 519114702 to 238,295qp)
 
(No difference)

Latest revision as of 05:35, 23 March 2021

Abstract

Most early research on route choice behavior analysis relied on the data collected from the stated preference survey or through small-scale experiments. This manuscript focused on the understanding of commuters’ route choice behavior based on the massive amount of trajectory data collected from occupied taxicabs. The underlying assumption was that travel behavior of occupied taxi drivers can be considered as no different than the well-experienced commuters. To this end, the DBSCAN algorithm and Akaike information criterion (AIC) were first used to classify trips into different categories based on the trip length. Next, a total of 9 explanatory variables were defined to describe the route choice behavior, and and the path size (PS) logit model was then built, which avoided the invalid assumption of independence of irrelevant alternatives (IIA) in the commonly seen multinomial logit (MNL) model. The taxi trajectory data from over 11,000 taxicabs in Xi’an, China, with 40 million trajectory records each day were used in the case study. The results confirmed that commuters’ route choice behavior are heterogenous for trips with varying distances and that considering such heterogeneity in the modeling process would better explain commuters’ route choice behaviors, when compared with the traditional MNL model.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2020/8836511.xml,
http://dx.doi.org/10.1155/2020/8836511 under the license cc-by
https://doaj.org/toc/0197-6729,
https://doaj.org/toc/2042-3195 under the license http://creativecommons.org/licenses/by/4.0/
http://downloads.hindawi.com/journals/jat/2020/8836511.pdf,
https://academic.microsoft.com/#/detail/3083864203
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.1155/2020/8836511
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?