(Created page with " == Abstract == Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renew...")
 
m (Scipediacontent moved page Draft Content 561195770 to 238,295pq)
 
(No difference)

Latest revision as of 04:34, 23 March 2021

Abstract

Modern society is facing great challenges due to pollution and increased carbon dioxide (CO2) emissions. As part of solving these challenges, the use of renewable energy sources and electric vehicles (EVs) is rapidly increasing. However, increased dynamics have triggered problems in balancing energy supply and consumption demand in the power systems. The resulting uncertainty and unpredictability of energy production, consumption, and management of peak loads has caused an increase in costs for energy market actors. Therefore, the means for studying the balancing of local smart grids with EVs is a starting point for this paper. The main contribution is a simulation-based approach which was developed to enable the study of the balancing of local distribution grids with EV batteries in a cost-efficient manner. The simulation-based approach is applied to enable the execution of a distributed system with the simulation of a local distribution grid, including a number of charging stations and EVs. A simulation system has been constructed to support the simulation-based approach. The evaluation has been carried out by executing the scenario related to balancing local distribution grids with EV batteries in a step-by-step manner. The evaluation results indicate that the simulation-based approach is able to facilitate the evaluation of smart grid– and EV-related communication protocols, control algorithms for charging, and functionalities of local distribution grids as part of a complex, critical cyber-physical system. In addition, the simulation system is able to incorporate advanced methods for monitoring, controlling, tracking, and modeling behavior. The simulation model of the local distribution grid can be executed with the smart control of charging and discharging powers of the EVs according to the load situation in the local distribution grid. The resulting simulation system can be applied to the study of balancing local smart grids with EV batteries. Based on the evaluation results, it is estimated that the simulation-based approach can provide an essential, safe, and cost-efficient method for the evaluation of complex, critical cyber-physical systems, such as smart grids.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://dx.doi.org/10.3390/systems3030081 under the license cc-by
https://doaj.org/toc/2079-8954
http://dx.doi.org/10.3390/systems3030081
http://dx.doi.org/10.3390/systems3030081 under the license https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/systems3030081
https://www.mdpi.com/2079-8954/3/3/81,
https://cris.vtt.fi/en/publications/simulation-based-approach-for-studying-the-balancing-of-local-sma,
https://dx.doi.org/10.3390/systems3030081,
http://dx.doi.org/10.3390/systems3030081,
https://dblp.uni-trier.de/db/journals/systems/systems3.html#LatvakoskiMRJK15,
https://doi.org/10.3390/systems3030081,
https://core.ac.uk/display/90412062,
https://academic.microsoft.com/#/detail/1669209699
Back to Top

Document information

Published on 01/01/2015

Volume 2015, 2015
DOI: 10.3390/systems3030081
Licence: Other

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?