(Created page with " == Abstract == The research and development of autonomous vehicle (AV) technology have been gaining ground globally. However, a few studies have performed an in-depth explor...")
 
m (Scipediacontent moved page Draft Content 520166806 to 238,295bc)
 
(No difference)

Latest revision as of 19:38, 22 March 2021

Abstract

The research and development of autonomous vehicle (AV) technology have been gaining ground globally. However, a few studies have performed an in-depth exploration of the contributing factors of crashes involving AVs. This study aims to predict the severity of crashes involving AVs and analyze the effects of the different factors on crash severity. Crash data were obtained from the AV-related crash reports presented to the California Department of Motor Vehicles in 2019 and included 75 uninjured and 18 injured accident cases. The points-of-interest (POI) data were collected from Google Map Application Programming Interface (API). Descriptive statistics analysis was applied to examine the features of crashes involving AVs in terms of collision type, crash severity, vehicle movement preceding the collision, and degree of vehicle damage. To compare the classification performance of different classifiers, we use two different classification models: eXtreme Gradient Boosting (XGBoost) and Classification and Regression Tree (CART). The result shows that the XGBoost model performs better in identifying the injured crashes involving AVs. Compared with the original XGBoost model, the recall and G-mean of the XGBoost model combining POI data improved by 100% and 11.1%, respectively. The main features that contribute to the severity of crashes include weather, degree of vehicle damage, accident location, and collision type. The results indicate that crash severity significantly increases if the AVs collided at an intersection under extreme weather conditions (e.g., fog and snow). Moreover, an accident resulting in injuries also had a higher probability of occurring in areas where land-use patterns are highly diverse. The knowledge gained from this research could ultimately contribute to assessing and improving the safety performance of the current AVs.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

http://downloads.hindawi.com/journals/jat/2020/8881545.xml,
http://dx.doi.org/10.1155/2020/8881545
under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.1155/2020/8881545
Licence: Other

Document Score

0

Views 3
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?