(Created page with "== Abstract == Powder bed additive manufacturing (AM) is comprised of two repetitive steps: spreading of powder and selective fusing or binding the spread layer. Powder-bed A...")
 
m (Scipediacontent moved page Draft Content 731337353 to Desai III 2021a)
 
(No difference)

Latest revision as of 17:16, 11 March 2021

Abstract

Powder bed additive manufacturing (AM) is comprised of two repetitive steps: spreading of powder and selective fusing or binding the spread layer. Powder-bed AM can be sub-categorized as fusion-based where electron beams or laser beams are used to fuse the spread powder layer and binder-based where a liquid binder is used to bind the spread layer at areas specified by the governing CAD model. The latter process, commonly referred to as binder jet additive manufacturing (BJAM), outperforms fusion-based methods with respect to cost, build time, and material suitability; however, the parts are prone to shear-induced deformation during the powder spreading stage. Unlike fusionbased AM, the strength of BJAM parts is not fully developed until sintering and infiltration during postprocessing. This results in BJAM parts being more susceptible to deformation or even breakage due to the shearing action of the spreader. This shear-induced deformation can affect the precision and thereby performance of 3D printed parts. The binding step in BJAM is a complex function of binder viscosity, density, droplet size, impact speed, and drying time. The spreading step is a complex function of spreader speed and spreader shape, topography of spread and bound layer, and the rheology of the AM powder. This study presents a first-order model to simulate BJAM using a weak concrete-like, non-local, multilayer bonded DEM model. The DEM model has been parallelized using the massive parallelism offered by GPUs. An industry-grade metal powder is used to print physical cuboids at varying spreader speeds. The model is qualitatively verified against experiments on a real 3D printer. The model can be used to provide layer-wise spreading process control to minimize spreader shear-induced deformations.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 1000 - Manufacturing and Materials Processing, 2021
DOI: 10.23967/wccm-eccomas.2020.012
Licence: CC BY-NC-SA license

Document Score

0

Views 142
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?