(Created page with "== Abstract == The cerebrospinal fluid flow in a brain ventricular system is analyzed by the numerical approach employing a lattice-Boltzmann (LB) method. The cerebrospinal f...")
 
m (Scipediacontent moved page Draft Content 795355669 to Koh et al 2021a)
 
(No difference)

Latest revision as of 16:59, 11 March 2021

Abstract

The cerebrospinal fluid flow in a brain ventricular system is analyzed by the numerical approach employing a lattice-Boltzmann (LB) method. The cerebrospinal fluid, which surrounds the human brain and spinal cord, fills the cerebral ventricles as well as the cranial and subarachnoid spaces. Diseases in a central nerve system disrupt the flow circulation which influences on a number of vital functions. A computational fluid dynamics technique is used to determine the member geometry impact on the flow motion. The numerical analysis focuses on building a simulation-based basis for testing/optimizing therapeutical methods and understanding the pathophysiology. Magnetic resonance (MR) imaging is exploited to obtain realistic geometries in a brain ventricular system. The computational domain is discretized by a hierarchical Cartesian octree mesh. The numerical procedure based on an LB method overcomes the difficulties raised by typical finite-difference and finite-volume methods on high-performance computing (HPC) systems. An oscillating flow boundary condition is defined to resolve the kinetic behavior of cerebrospinal fluid in a cardiac cycle. The three-dimensional structures captured in the cerebral ventricles show a qualitative agreement with an observation based on an MR velocity mapping. The simulation on a HPC system is able to provide further insights into the transport from brain to spinal cord.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 400 - Biomechanics and Mechanobiology, 2021
DOI: 10.23967/wccm-eccomas.2020.226
Licence: CC BY-NC-SA license

Document Score

0

Views 41
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?