(Created page with "== Abstract == In the present work the Local Discontinuous Galerkin (LDG) method with polynomial adaptivity is applied to the Large Eddy Simulation (LES) of the parallel blad...")
 
m (Scipediacontent moved page Draft Content 827312020 to Bresciani Abba 2021a)
 
(No difference)

Latest revision as of 16:57, 11 March 2021

Abstract

In the present work the Local Discontinuous Galerkin (LDG) method with polynomial adaptivity is applied to the Large Eddy Simulation (LES) of the parallel blade-vortex interaction (BVI). The BVI phenomenon occurs on helicopter and drone rotors in manoeuvring conditions and it produces impulsive changes in the pressure distributions, vibrations and noise. To deeply understand the mechanism of load generation related to the pressure field and three dimensional perturbations growth, to focus on the interaction between the vortex and the three dimensional structures in boundary layer and wake, accurate 3D unsteady numerical simulations of turbulent flows are necessary. For this reason, it is very important the use of a numerical code based on high order schemes such as LDG. Moreover, in the LDG approach, the numerical resolution can be varied on each element and in time, adapting to the requirement of the simulated flow and saving a large amount of computing resources. In the used numerical code the criterion for variation of the polynomial order is based on a refinement indicator especially suited for LES and based on the structure function. The local polynomial representation directly provides a means to separate large from small scale modes, thus providing the starting point for the definition of the subgrid scale models. In the present simulations, the subgrid scales contribution is represented with a sophisticated dynamic anisotropic subgrid model, suitable and well tested for wall resolved LES and complex separated turbulent flows. The BVI is simulated highlighting the effect of the vortex on the pressure distributions, on the boundary layer separation and on the resulting forces.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 700 - Numerical Methods and Algorithms in Science and Engineering, 2021
DOI: 10.23967/wccm-eccomas.2020.189
Licence: CC BY-NC-SA license

Document Score

0

Views 25
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?