(Created page with " == Abstract == The ability to accurately classify and identify the network traffic associated with different applications is a central issue for many network operation and r...")
 
m (Scipediacontent moved page Draft Content 262750284 to Fiore Palmieri 2009a)
 
(No difference)

Latest revision as of 10:27, 16 February 2021

Abstract

The ability to accurately classify and identify the network traffic associated with different applications is a central issue for many network operation and research topics including Quality of Service enforcement, traffic engineering, security, monitoring and intrusion-detection. However, traditional classification approaches for traffic to higher-level application mapping, such as those based on port or payload analysis, are highly inaccurate for many emerging applications and hence useless in actual networks. This paper presents a recurrence plot-based traffic classification approach based on the analysis of non-stationary "hidden" transition patterns of IP traffic flows. Such nonlinear properties cannot be affected by payload encryption or dynamic port change and hence cannot be easily masqueraded. In performing a quantitative assessment of the above transition patterns, we used recurrence quantification analysis, a nonlinear technique widely used in many fields of science to discover the time correlations and the hidden dynamics of statistical time series. Our model proved to be effective for providing a deterministic interpretation of recurrence patterns derived by complex protocol dynamics in end-to-end traffic flows, and hence for developing qualitative and quantitative observations that can be reliably used in traffic classification. © 2008 Elsevier B.V. All rights reserved.


Original document

The different versions of the original document can be found in:

https://api.elsevier.com/content/article/PII:S138912860800409X?httpAccept=text/plain,
http://dx.doi.org/10.1016/j.comnet.2008.12.015 under the license https://www.elsevier.com/tdm/userlicense/1.0/
https://dblp.uni-trier.de/db/journals/cn/cn53.html#PalmieriF09,
http://doi.org/10.1016/j.comnet.2008.12.015,
https://doi.org/10.1016/j.comnet.2008.12.015,
https://dl.acm.org/citation.cfm?id=1518207,
http://www.sciencedirect.com/science/article/pii/S138912860800409X,
https://core.ac.uk/display/53809928,
https://academic.microsoft.com/#/detail/2068754024
Back to Top

Document information

Published on 01/01/2009

Volume 2009, 2009
DOI: 10.1016/j.comnet.2008.12.015
Licence: Other

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?