(Created page with " == Abstract == Recently, a dual inverter motor drive feeding an open-end winding permanent magnet (PM) motor has been studied, aiming for the improvement of total efficiency...")
 
m (Scipediacontent moved page Draft Content 190134059 to Oto et al 2019a)
 
(No difference)

Latest revision as of 11:55, 15 February 2021

Abstract

Recently, a dual inverter motor drive feeding an open-end winding permanent magnet (PM) motor has been studied, aiming for the improvement of total efficiency and a fault tolerant function of hybrid and electric vehicles. The authors have studied the fault tolerant operation of the DC-bus battery, where the failed inverter is operated only with a capacitor across the DC-bus and a space vector modulation (SVM) is employed to regulate the capacitor voltage. In our previous research, the SVM techniques for the fault tolerant operation in a low-modulation-index have been proposed. However, it was difficult to have fault tolerance in a high-modulation-index case. The voltage margin in the fault situation is limited because the failed inverter is operated with the capacitor. In this paper, the SVM technique to achieve the fault tolerant operation in the high-modulation-index state is investigated. The novel point of this paper is that the proposed technique introduces a field-weakening control in order to reduce the command voltage vector within the controllable voltage region. The proposed technique was verified through experimental tests and its operational characteristics were compared with the normal operation, from the viewpoints of the total harmonic distortion (THD) and the efficiencies of the inverters and the motor.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://doaj.org/toc/2032-6653 under the license cc-by
https://www.mdpi.com/2032-6653/10/4/65/pdf,
https://academic.microsoft.com/#/detail/2980454777
http://dx.doi.org/10.3390/wevj10040065
under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2019

Volume 2019, 2019
DOI: 10.3390/wevj10040065
Licence: Other

Document Score

0

Views 0
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?