(Created page with " == Abstract == China has allocated low-carbon targets into all regions and trades, and road traffic also has its own emission reduction targets. Congestion may increase carb...") |
m (Scipediacontent moved page Draft Content 402237443 to Zhang et al 2019p) |
(No difference)
|
China has allocated low-carbon targets into all regions and trades, and road traffic also has its own emission reduction targets. Congestion may increase carbon emissions from road traffic. It is worthwhile to study whether it is possible to achieve the goal of road traffic reduction by controlling congestion
that is, to achieve the equilibrium between traffic congestion and a low-carbon economy. The innovation of this paper is mainly reflected in the innovative topic selection, the introduction of a traffic index, and the establishment of the first traffic congestion and low-carbon economic equilibrium model. First, the relevant calculation method of the traffic index is introduced, and the traffic index is used to quantify the traffic congestion degree. Using the traffic index, GDP, and road passenger traffic volume, a nonlinear regression model of road traffic carbon emissions is constructed. Then, the calculation method of the carbon emission intensity of road traffic in the region is proposed. The equilibrium model of traffic congestion and a low-carbon economy is constructed to look for the degree of road traffic congestion that may occur under the permitted carbon emission intensity. Taking Beijing, where electric vehicles account for less than 3% of the total vehicles, as an example, it is difficult to achieve the equilibrium target between road traffic congestion and a low-carbon economy by alleviating traffic congestion in 2020. If the target of traffic carbon emission reduction in 2020 is adjusted from 40%&ndash
45% to 19.7% based on 2005, the equilibrium will be achieved. A negative correlation between road traffic carbon emissions and the reciprocal of the traffic index (1/TI) is found after eliminating the effects of GDP and PTV (road passenger traffic volume). As the traffic index decreases by units, the carbon emission reduction accelerates. The results show that carbon reduction targets cannot be simply allocated to various industries. The results of the research on the degree of the impact of traffic congestion on carbon emissions can be used as a basis for carbon reduction decisions of the traffic sector. The research method of this paper can provide a reference for the study of the equilibrium of traffic congestion and a low-carbon economy in other regions.
Document type: Article
The different versions of the original document can be found in:
under the license https://creativecommons.org/licenses/by/4.0/
Published on 01/01/2019
Volume 2019, 2019
DOI: 10.3390/su11010219
Licence: Other
Are you one of the authors of this document?