(Created page with " == Abstract == Air pockets generated during emptying operations in pressurized hydraulic systems cause significant pressure drops inside pipes. To avoid these sudden pressur...")
 
 
(No difference)

Latest revision as of 12:47, 12 February 2021

Abstract

Air pockets generated during emptying operations in pressurized hydraulic systems cause significant pressure drops inside pipes. To avoid these sudden pressure changes, one of the most widely used methods involves the installation of air valves along the pipeline route. These elements allow air exchange between the exterior and the interior of the pipe, which alleviates the pressure drops produced and thus prevents possible breaks or failures in the structure of the installation. This study uses a mathematical model previously validated by the authors in smaller installations to simulate all hydraulic variables involved in emptying processes over time. The purpose of these simulations is the validation of the mathematical model in real large-scale installations, and to do this, the results obtained with the mathematical model are compared with actual measurements made by the partner company. The hydraulic system selected for the study is a pipeline with a nominal diameter of 400 mm and a total length of 1020 m. The results obtained from the mathematical model show great similarity with the experimental measurements, thus validating the model for emptying large pipes.

Document type: Article

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document

Original document

The different versions of the original document can be found in:

https://doaj.org/toc/2073-4441 under the license cc-by
https://www.mdpi.com/2073-4441/12/8/2313/pdf,
https://repositorio.utb.edu.co/handle/20.500.12585/9566,
https://academic.microsoft.com/#/detail/3055686436
http://dx.doi.org/10.3390/w12082313
under the license https://creativecommons.org/licenses/by/4.0/
Back to Top

Document information

Published on 01/01/2020

Volume 2020, 2020
DOI: 10.3390/w12082313
Licence: Other

Document Score

0

Views 2
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?