(Created page with " == Abstract == Pipelines and piping frequently suffer from metal loss that threatens their integrity and serviceability. Multiple repair options exist for straight sections...") |
m (Scipediacontent moved page Draft Content 378018812 to Alexander et al 2010b) |
(No difference)
|
Pipelines and piping frequently suffer from metal loss that threatens their integrity and serviceability. Multiple repair options exist for straight sections of pipe; however, repair options for pipe fittings such as elbows and tees are typically limited to composite repair systems, or section replacement. The latter method can be costly as it often requires at least a partial shut down of the pipeline while the section is replaced. A composite repair system however, can be performed in place during operations at a greatly reduced cost. The main challenge with the composite repair system is the required demonstrated ability to restore integrity and serviceability to the same level as the original metal system. Over the past 10 years, Stress Engineering Services, Inc. has been greatly involved in evaluating the ability of many composite repair systems to restore the original pipeline structural integrity by testing methods and analysis methods. The current paper investigated the ability of the Armor Plate Pipe Wrap (APPW) system to restore the burst pressure of tee and elbow pipe fittings with 60% metal loss to that of a nominal thickness system. In this program four full scale burst tests were conducted: on 12-inch nominal pipe size (NPS) Y52 tee and elbow pipe fittings. All four fittings had 60% metal loss; two were repaired with APPW, and the other two were not repaired. Prior to burst testing, elastic plastic finite element analyses (FEA) were performed to adequately size the repair thickness. The results of the FEA calculations predicted the restoration of the burst pressures of the repaired fittings up to a 1.6% agreement with the actual burst pressure results. Furthermore, the burst pressure of the 60% metal loss tee was increased from 3,059 psi (unrepaired) to 4,617 psi, or a 51% improvement. The burst pressure of the 60% metal loss elbow was increased from 2,610 psi to 4,625 psi, or a 77% improvement. Both the analysis and testing results demonstrated that composite materials can restore the pressure integrity of corroded tee and elbow pipe fittings.Copyright © 2010 by ASME
The different versions of the original document can be found in:
Published on 01/01/2010
Volume 2010, 2010
DOI: 10.1115/ipc2010-31537
Licence: CC BY-NC-SA license
Are you one of the authors of this document?